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Executive Summary 

D2.1 provides the conceptual REWIRE architecture and the technical requirements along with the 
requirements of the three use cases that will be used for validation purposes. In this context, it provides 
a detailed view of REWIRE’s use cases and scenarios and describes 13 user stories to be used for 
validation of core REWIRE pillars (e.g., the REWIRE customisable TEE). In addition, an initial set of KPIs 
per use case has been devised (to be revised under WP6, T6.1), hinting at business and technical 
indicators that will be tested under the piloting WP of the project. 
 
The overall purpose of D2.1 is to provide a reference document for the REWIRE project to be used as 
input for the technical WPs. In parallel, the consortium has worked towards defining the technical 
requirements of the REWIRE needed for fulfilling the project’s vision of providing a holistic security 
management framework that can safeguard IoT environments during the whole spectrum of their lifecycle, 
i.e., from the Design to the Runtime phases, capitalizing on trust-aware defense mechanisms that exploit 
emerging technologies based on Formal verification, Theorem Proofs, Open Standard Instruction Set 
Architectures (ISA), Trusted Computing, Blockchain and Artificial Intelligence (AI). Requirements, with a 
holistic view on a security solution in today’s IoT ecosystems, have been categorised as mandatory and 
desirable, and in total, 31 technical requirements have been extracted. 
  
Following these activities, a mapping between the project’s technical requirements and the use case 
requirements has been conducted, identifying the exact needs of each use case and the specific REWIRE 
functionality that will be tested in each scenario. That mapping has also allowed the consortium to devise 
the REWIRE MVP. This will cover the needs of the use cases as well as other horizontal requirements 
that are necessary for demonstrating the overall REWIRE concept. 
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Chapter 1 

1. Introduction 

1.1 Scope and Purpose 

The vision of REWIRE is to provide a holistic security management framework for safeguarding the next-
generation connected “Systems-of-Systems” (SoS).  More specifically, the rationale is to capitalize on 
trust-aware defence mechanisms that exploit emerging technologies based on Formal verification, 
Theorem Proofs, Open Standard Instruction Set Architectures (ISA), Trusted Computing, Blockchain, and 
Artificial Intelligence (AI). Thus, the goal of the REWIRE is to offer a harmonized toolchain to efficiently 
protect IoT deployments during their entire lifecycle. The deliverable at hand provides an introduction to 
the REWIRE’s scope and vision, denoting the technical requirements that have been identified by the 
partners, and the use cases for the implementation of the envisaged REWIRE scalable and multifunctional 
cybersecurity platform. The deliverable provides in detail the REWIRE conceptual architecture, the 
technical requirements of the project, some representative reference scenarios, and a number of user 
stories to be investigated within these scenarios. 

1.2 Relation to other WPs and Deliverables 

As the reference architecture and technical requirements deliverable, this deliverable serves as the basis 
for all later WPs and deliverables. This first initial version of the deliverable includes the complete 
documentation of the REWIRE requirements of T2.1, the REWIRE reference architecture of T2.2, and the 
progress of the rest of the tasks in the WP (e.g., T2.3, T2.4, and T2.5) until M12. The final version of this 
deliverable will be provided during M21 and will include the complete developments of T2.3-T2.5 and 
potential updates on the reference architecture. In addition, D2.1 constitutes the baseline for Milestone 
MS1 - Availability of the conceptual architecture, operational landscape, and requirements to be met by 
the REWIRE framework, as it delivers the architectural specification of the REWIRE architecture. The 
inter-dependencies among the REWIRE WPs are shown in the Pert diagram, illustrated in Figure 1 below. 
 

 
Figure 1.1: REWIRE Pert diagram 
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1.3 Deliverable Structure 

In Chapter 2 we describe the background and state-of-the-art analysis regarding flexible hardware 
architectures, formal verification, trust governance, runtime monitoring, identity management, SW/FW 
verification, certification through blockchain, and AI-based threat detection. The overall methodology of pf 
defining the REWIRE MVP is presented in Chapter 3. Chapter 4 describes in detail the conceptual 
architecture including the functional components and the core functional objectives of the project. Chapter 
5 serves with detailed lists of the technical requirements (e.g., functional, security, operational assurance, 
formal verification, and RoT requirements). Chapter 6 outlines the three use cases in detail, including the 
reference scenarios adopted by each demonstrator. The user stories from which the requirements will be 
drawn as part of the scenarios are described in detail and will govern the industrial demonstrations of the 
REWIRE. Chapter 7 describes the trust indicators and the threat landscape analysis in order to set the 
scene for the underlying threats to be considered in REWIRE. Chapter 8 documents aspects relevant to 
managing the security lifecycle and monitoring the secure on-boarding of the devices. Finally, Chapter 9 
maps the user stories to the technical requirements and defines the scope of the project’s demonstrator 
(MVP), and Chapter 10 concludes the deliverable.  
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Chapter 2 

2. REWIRE Vision and Background 
 
This chapter provides the mission of REWIRE project, the core underlying technological pillars and the 
consortium’s vision on to enhancing the security posture of next-generation SoS. Thus, the chapter set 
the scene for the REWIRE conceptual architecture and the functional requirements. 

2.1 REWIRE Mission and Underlying Technologies 

REWIRE's mission is to define a sound methodological (aligned with existing state-of-the-art methods), 
technological (aligned with current cybersecurity enablers, IoT-related protection techniques), and 
organizational (aligned with current skill development stakeholders’ involvement) approach towards 
securing IoT devices under a zero-trust concept throughout the entire lifecycle. The REWIRE approach 
focuses on developing a novel security and trust assessment framework, for Next-Generation connected 
“Systems-of-Systems” (SoS) covering the strict security, safety, and resilience requirements during the 
entire lifecycle of a CPS. This approach enables real-time protection and implements a continuous 
security improvement process, from the Design Phase, covering the extraction of the level of 
trustworthiness per device based on overarching system requirements, to the Runtime Phase, covering 
the operation, update re-configuration, and even decommissioning of a compromised device. 
 
REWIRE addresses some of the most challenging open issues of cybersecurity research in the ICT 
domain that based on its use cases will transform (among others) smart cities, automotive, and satellite 
communications; those domains are tightly related to the main emerging trends of the IoT and embedded 
security field. More specifically, REWIRE will capitalise on trust-aware defence mechanisms that exploit 
emerging technologies based on Formal verification, Theorem Proofs, Open Standard Instruction Set 
Architectures (ISA), Trusted Computing, Blockchain, and Artificial Intelligence (AI). Thus, REWIRE will 
have to address critical threats to realise the business and economic potential of these emerging 
technologies in the context of the aforementioned domains. A challenging issue that the REWIRE project 
will tries to solve is how to achieve the Zero-Trust and security-by-design principles under the concept of 
“Never Trust, Always Verify”. By coupling the Zero-Trust and security-by-design principles under the 
concept of “Never Trust, Always Verify”, REWIRE will ensure security throughout continuous security 
auditing, trust computing, and theorem proofs for defining open ISA microarchitectures for reducing 
security threats of open-source hardware and software for connected devices. 
 
Enabling those promising capabilities above and addressing the associated challenges of doing so, has 
not been sufficiently researched and validated and is one of the primary goals of the REWIRE project for 
enhancing the security posture of next-generation SoS. The core value propositions of REWIRE are in 
the fields of theorem proving and formal verification, attestation, dynamic real-time risk assessment, 
misbehaviour and vulnerability detection, and enhanced certification for the device state through the use 
of Blockchain structures. In this context, REWIRE will investigate, in the following sections, the adoption 
of these key technologies, in the above-mentioned fields. 

2.2 REWIRE Research Pillars and State-of-the-art analysis  

This section is focused on the main research pillars of REWIRE project, providing the state-of-the-art 
analysis along with methods and tools used in the literature as well as the corresponding issues and open 
challenges that needs to be addresses in the context of REWIRE. 
 

2.2.1. Design of flexible hardware architectures converging Security and 

Performance 
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One core research question that REWIRE tries to answer is how to design flexible hardware architectures 
in an efficient way to reduce security threats, as the first defence mechanism from the very beginning of 
a system’s life cycle. The first step towards this direction is to model a wide range of security requirements 
of the hardware itself and then formally verify these security requirements. Thus, system designers and/or 
developers will be in a position to detect potential vulnerabilities in the system and analyse how they would 
propagate in the architecture before building it. A formalized methodology that is used to support the 
requirements, design, analysis, verification, and validation associated with the development of complex 
systems is Model Based Engineering (MBE). MBE is at the core of the toolchain envisioned in REWIRE. 
Notably, the Architecture Analysis and Design Language (AADL) [REF-01] – initially developed for avionic 
applications – is widely used for designing complex real-time embedded systems, mainly thanks to the 
fact that AADL’s language constructs allows modelling both software (SW) and hardware (HW). AADL 
has a reference implementation called OSATE [REF-02], which is an open-source modelling environment 
that comes with a few built-in analysis tools, such as flow control and schedulability. Thanks to the fact 
that OSATE is based on the Eclipse framework, creating new analysis plugins is relatively straightforward. 
Also, AADL includes an annex mechanism for extending the base grammar, thereby supporting new 
features and analyses. 
 
AGREE. Assume Guarantee REasoning Environment (AGREE) [REF-03] is an example of OSATE 
annex, which is a compositional assume guarantee-style formal analyses tool. AGREE attempts to prove 
properties about one layer of the architecture using properties allocated to subcomponents. The 
composition is performed in terms of formal assume-guarantee contracts that are provided for each 
component. Assumptions describe the expectations the component has on its inputs and the environment, 
while guarantees describe bounds on the component’s behaviour. The model checker then attempts to 
find any model execution traces that violate these contracts using one of several Satisfiability Modulo 
Theories (SMT) solvers. If the model checker covers all reachable states in the model without finding a 
violation, the model is proven to satisfy its contracts.  
 
Resolute. Another important annex for reasoning over AADL models is Resolute [REF-04], which 
includes a language for embedding assurance arguments in AADL models and a tool for evaluating the 
validity of the associated evidence. Because high assurance products generally undergo certification at 
the system level, there is a natural mapping between a system design and the corresponding assurance 
argument. Resolute takes advantage of this alignment by enabling the specification of the assurance 
argument directly in the AADL model. The assurance case can then be instantiated and evaluated with 
elements specified in the model. The resulting assurance case can be viewed in the modelling 
environment or exported to graphical tools such as AdvoCATE [REF-05]. 
 
Why AADL? The choice of using AADL over other MBE languages such as SysML [REF-06] is informed 
by multiple factors. First, AADL was designed for specifying hierarchical system architectures, enabling 
the composition of systems from subsystems, and refinement from abstract to concrete types. It includes 
first class objects for representing components that comprise embedded systems such as memory, buses, 
processors, threads, subprograms, and data. SysML, on the other hand, is more abstract and thus better-
suited for early stages of system engineering. Second, AADL has sufficiently rigorous runtime semantics, 
enabling a wide range of analyses that would otherwise not be possible. And third, AADL’s annex support 
cannot be overstated. The ability to extend the language to perform new types of analyses is critical in 
the rapidly evolving – and heavily regulated – Cyber-Physical Systems (CPS) design space. 
 
BriefCASE. On a related note, Cofer et al. recently developed BriefCASE [REF-07], an AADL-based 
framework for designing, building, and assuring cyber-resilient systems. In that work, high-level security 
requirements are mapped to seL4 microkernel [REF-08] features via a (very) trustworthy toolchain. 
Although they did succeed at creating a framework for crafting formally verified secure applications, their 
work did not focus heavily on hardware security, which plays a fundamental role in protecting a wide range 
of CPS including IoT devices. In contrast, REWIRE’s vision is to propose a framework that is flexible 
enough to allow system engineers to specify a wide range of system requirements and map them to the 
appropriate software or hardware block. For example, one might require a platform capable of performing 
trusted boot to verify the authenticity of an over-the-air firmware update, or a platform capable of executing 
hardware-implemented crypto-primitives (e.g., symmetric, or asymmetric encryption, hash functions, etc.). 
While the former security goal could be achieved using a hardware Root of Trust (RoT) acting as the 
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Trusted Platform Module (TPM), the latter would require Instruction Set Extensions (ISEs) or memory-
mapped crypto-accelerators. These solutions are outside the scope of what BriefCASE currently offers. 
 
External Evidence. Furthermore, AADL’s Resolute can be used to include formal correctness evidence 
from tools external to OSATE. This makes it possible for system engineers to choose the appropriate 
formal technique for verifying each requirement. While some requirements might be better suited for built-
in AADL analysis, others might require the use of external model checkers or proof assistants. In REWIRE, 
for instance, formally verifying a highly undecidable property such as “crypto-schemes shall be provably 
secure & resilient to side-channel attacks” requires a sophisticated tool, such as the Coq proof assistant 
[REF-09] or external model checkers equipped with sophisticated SMT-solvers. 
 
Formal Verification Techniques. In summary, the two main techniques used to formally verify 
requirements within REWIRE will be deductive verification with the Coq proof assistant and model 
checking (besides AADL native built-in analyses). 
 
Coq. Coq is a proof assistant, consisting of a typed high-order functional specification language, a 
language to write proof scripts, and a proof-checking kernel. It has been granted the ACM Software 
System Award in 2013. Its high praise comes from a variety of reasons: arguably the most significant, 
Coq relies on a relatively small kernel to check proofs, which means that only a small amount of code 
must be inherently trusted. Coq also enjoys the strong-normalization property, which informally means 
that the part of Coq that must be trusted is simple and therefore highly trustworthy [REF-10]. Since its 
creation, Coq has been successfully used for designing correct-by-construction software and hardware 
besides formalization of mathematics. Compared to hardware, software development with Coq is mature 
-- the most notable use of Coq for that goal arguably being CompCert [REF-11], a certified C compiler 
(the compiler is proved to preserve the semantics of the target program). For hardware design, the use of 
proof assistants is a more recent endeavour. Researchers at MIT have recently developed a couple of 
Domain Specific Languages (DSLs) for designing circuits and proving its correctness: Kami [REF-12] has 
been first proposed in 2017 and has since been used to fully verify a RISC-V core implementation. Since 
then, its development has been picked up by industry. Moreover, Koika [REF-13] is another DSL from 
MIT that takes the vision set out by the Kami project to a next level: by implementing the core 
functionalities of the Bluespec SystemVerilog (BSV) [REF-14] language, it offers better tools to hardware 
designers to reason about per-cycle performance. 
 
Deductive verification vs Model Checking. In certain cases, however, highly decidable (i.e., 
computable) properties are better suited for model checking, since they are optimised for that goal and 
Coq does not offer a great degree of automation for computing. Coq, and all proof assistants, in general, 
relies on experts to reason about the design and manually prove properties, whereas model checking 
works as “push-button” tools, capable of checking properties automatically. As of model checking, in 
summary, there are two major drawbacks: 1) the limited expressivity of the languages used to specify 
formulae compared to a tool such as Coq, and 2) the state-space explosion problem, which limits the size 
of the system that model checkers can handle. There is an inherent trade-off between automation and 
expressivity when comparing model checking and deductive verification with proof assistants. Thus, 
REWIRE’s vision is to explore both approaches for formally verifying security requirements. 
 
Model Checking. In more depth, model checking is a method for assessing whether a formal model of a 
system satisfies a given property, expressed in a formal language. Different than dynamic verification, 
model checking is guaranteed to fully explore the state-space of the design and either validate the 
properties or generate counterexamples. Historically, after the seminal work that introduced temporal 
logics in computer science in the 1970s [REF-15], model checking was conceived in the 1980s as an 
approach to verify computer systems [REF-16][REF-17]. The scalability of the method, challenged by the 
unmanageable size of the explicit-state models (a problem known as “state space explosion”) 
substantially improved thanks to the development of symbolic encodings and algorithms [REF-18], based 
on efficient data structures [REF-19] and propositional logic. Due also to the advances in the development 
of satisfiability solvers [REF-20], Bounded Model Checking (BMC) [REF-21] became a successful 
approach to error finding, later extended to a complete method, both able to detect a violation and prove 
the validity of a given property, in combination with techniques such as k-induction [REF-22] and Craig 
interpolation [REF-23]; scalability could be further enhanced by relying on under- or over-approximations, 
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as in automated abstraction refinement frameworks [REF-24]. More recently, IC3 or property-directed 
reachability [REF-25][REF-26] established itself as the most effective approach to propositional model 
checking, as also shown by the results of the Hardware Model Checking Competition [REF-27].  
 
Model Checking & Industry. Model checking, especially in industry, has become the standard choice 
for verification of digital systems at different levels of abstraction (e.g., RTL, gate-level). Properties of 
interest are encoded in languages like the Property Specification Language (PSL) and System Verilog 
Assertions (SVA) [REF-28][REF-29]. Popular examples of industrial tools for performing property and 
equivalence checking (specific sorts of model checking) are Cadence’s JasperGold and Synopsis’s VC 
Formal.  In the area of hardware security, model checking has been successfully used to detect backdoors 
and trojans in intellectual property cores and integrated circuits [REF-30][REF-31][REF-32][REF-33][REF-
34]. 
 
UCLID5. Some works have proposed a mixed approach to the verification of hardware designs. UCLID5 
[REF-35], for instance, is a framework that integrates compositional modelling, synthesis, and verification. 
Given a system model expressed in a proprietary language, the tool supports properties in the form of 
pre/post conditions, invariants, temporal specifications; depending on the type of property, verification is 
performed by means of model checking techniques such as BMC and k-induction, with the help of an off-
the-shelf Satisfiability Modulo Theory (SMT) solver. 
 
RISC-V. The commonality between all formal verification techniques mentioned above is the fact that they 
have all been shown to be applicable to RISC-V – one of REWIRE's technological pillars. RISC-V is an 
open instruction set architecture (ISA) proposed by researchers at UC Berkeley in 2010. Since its 
creation, it has seen great success, both in academia and in industry. There is a multitude of factors that 
have contributed to its success, here we cite a few: a) it is royalty free; b) inasmuch as it is open, many 
parties contribute to its development, which means that innovation happens in a fast and reliable way; c) 
it is made to be extended, which means that it is relatively easy to introduce new custom instructions; this 
has been used extensively for tightly coupling cryptographic accelerators to existing RISC-V designs, for 
instance. Moreover, it is particularly compelling for formal-methods research, because it is a simple clean-
slate design to reason about and yet is part of a mature ecosystem. It makes for a very compelling platform 
for experimentation is basic exploratory research, progressively extensible to full-fledged industrial 
systems. 
 
Chipyard / Chisel / Rocket. One example of the prolific community effort on the RISC-V development is 
the Chipyard framework [REF-36]. Chipyard is an open-source generator-based agile design process for 
hardware, aimed at reducing development costs. Its main features are rich parametrization and 
incremental extensions. Chipyard provides a framework to bring together a collection of independently 
developed open-source tools and Register Transfer Level (RTL) generators. Since its introduction in 2012, 
Chipyard has been used to generate System on Chips (SoCs) based on the Rocket processor, an in-
order RISC-V core. These chips are also called “Rocket Chips” and the corresponding Chipyard feature 
to generate them is called “Rocket Chip SoC generator”. Chipyard inherits Rocket Chip’s Chisel-based 
parametrized hardware generator methodology [REF-37], a Scala-based language for hardware design. 
Additionally, Chipyard allows IP blocks written on other languages, such as Verilog, to be included via a 
Chisel wrapper. 
 
SAIL. Finally, the RISC-V Foundation [REF-38] has adopted a golden standard in the form of an ISA 
specification in the SAIL language [REF-39], meaning that the official RISC-V ISA standard switched from 
being documented in typical textual form to a formal language which can be linked to a variety of tools, 
such as Coq. This feature allows designers to reason about correctness directly against the ISA 
semantics, thus reducing the number of abstraction gaps between different models. 
 

2.2.1.1. Open challenges and needs 

Formal verification historically had a strong record in HW verification with a range of different tools and 

techniques. However, formal verification in crypto-systems and on hardware and software co-design is 

still unexplored, let alone on safety critical systems. In parallel, formal verification methodologies on RISC-

V based security solutions is still in incubation; the research community is currently exploring a series of 
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established verification approaches close to the hardware level that can reason about functional 

requirements, usually with respect to memory access (overflows or underflows), mutual exclusion and 

atomic execution of instructions. A straightforward challenge that the REWIRE project will attempt to 

tackle is the traceability and provenance of system (device) level requirements down to microarchitecture 

artefacts that will govern the baseline computations of the processor. At the same time, producing 

evidence in all the design stages is crucial to validate that each engineer has taken the correct 

assumptions (verified in next step) to develop his solution. This multi-disciplinary engineering process, 

enhanced by the REWIRE framework specifically for security requirements will highlight the importance 

of producing verification evidence per security requirements and when this evidence is requested by the 

certification authorities. Understanding that security specifications are describing system’s non-functional 

behaviour, the main goal of REWIRE is to instantiate a re-usable approach (e.g., intruder theories and 

models) that with the appropriate tuning can be applicable to different application use-cases, proving (or 

not) the validity and resilience of the security solution develop, traced from system level till the instruction 

set design.  

 

2.2.2. Symmetric cryptography mechanism in the context of physical 

adversaries 

The previous section gave an interesting account of the possibilities and challenges of using formal 

methods in the design of security systems. However, as the system is deployed, a certain number of 

additional vulnerabilities are added, such as the possibility of physically accessing or monitoring a device. 

The notion of security in such a context requires specific countermeasures. Here we describe the context 

and definitions that enable a provable level of security (i.e., reduction to physical and logical assumptions) 

to be achieved, taking physical attacks into account. 

 

Authenticated encryption [REF-40]. Often when two parties want to achieve secure communication, 

they aim at achieving properties that can be defined through cryptography. According to the scenario, 

they can encompass integrity to ensure that processed data are not forged by a malicious player and 

confidentiality to assess that the processed data's does not reveal information on the original message. 

Designing a scheme that combine both integrity and confidentiality is a challenging task and some of the 

last cryptographic competitions are dedicated to that task. Such constructions that achieve both notions 

are denoted as “Authenticated Encryption” [REF-41]. They are well studied symmetric cryptographic 

constructions and therefore offer good security and performance features. 

 
Security of cryptographic protocols and their implementation [REF-42]. A cryptographic primitive 

can be considered from two points of view: on the one hand, it can be viewed as an abstract mathematical 

object or black box (i.e. a transformation, possibly parameterized by a key, turning some input into some 

output); on the other hand, this primitive will in fine have to be implemented in a program that will run on 

a given processor, in a given environment, and will therefore present specific characteristics [REF-43]. 

The first point of view is the one of classical cryptanalysis and is somehow encompassed in the previous 

point; the second one is the one of physical security. Physical attacks on cryptographic devices take 

advantage of implementation-specific characteristics to recover the secret parameters involved in the 

computation. They are therefore much less general - since specific to a given implementation but often 

much more powerful than classical cryptanalysis and are considered very seriously by cryptographic 

devices manufacturers [REF-44]. 

 

Lightweight cryptography [REF-45]. The deployment of small computing devices such as RFID tags, 

industrial controllers, sensor nodes and smart cards is becoming much more common. The shift from 

desktop computers to small devices brings a wide range of new security and privacy concerns. In many 

conventional cryptographic standards, the trade-off between security, performance and resource 

requirements was optimized for desktop and server environments, and this makes them difficult or 

impossible to implement in resource-constrained devices. When they can be implemented, their 
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performance may not be acceptable. Lightweight cryptography is a subfield of cryptography that aims to 

provide solutions tailored for resource-constrained devices. There has been a significant amount of work 

done by the academic community related to lightweight cryptography; this includes efficient 

implementations of conventional cryptography standards, and the design and analysis of new lightweight 

primitives and protocols. The recent competition of the NIST was completed and “Ascon” [REF-46] was 

selected as the new standard for lightweight cryptographic application. 

 

Leakage-resilient cryptography [REF-47]. Since the introduction of side-channel attacks in the late 

nineties, securing cryptographic implementations against leakage has been a major research challenge. 

These attacks raise critical security concerns, as they enable recovering sensitive information such as 

long-term secret keys and are virtually applicable to any type of implementation if no countermeasures 

are deployed. As a result, various types of protection mechanisms have been introduced, working at 

different abstraction levels [REF-48]. Due to the physical nature of the leakage, the first countermeasures 

were typically proposed at low abstraction levels. For example, hardware countermeasures can target a 

reduction of the side channel information by blurring the signal into noise in the time or amplitude domains, 

or by reducing this signal thanks to special (dual rail) circuit technologies [REF-49]. These hardware 

countermeasures can then be augmented by implementation-level randomization mechanisms aimed at 

amplifying the side channel leakage reduction. Masking achieves this goal by exploiting data 

randomization (i.e., secret sharing) [REF-50] and shuffling does it by randomizing the order of execution 

of the operations [REF-51]. Steady progresses have been made in order to improve the understanding of 

these different countermeasures. For example, masking is supported by a strong theoretical background. 

Yet, it remains that the secure implementation of low-level countermeasures (e.g., masking) is quite 

sensitive to physical defaults, and is expensive both in software and hardware contexts. At a mode-level, 

countermeasures can leverage the previously cited protections to mitigate the overall cost of the mode. 

Nonetheless, a mode-level countermeasures denoted as “leakage-resilient PRF” proposes to use an 

unprotected primitive in such a manner that makes side-channel attacks hard to achieve.  

 

Formal verification of cryptographic schemes. Formal verification (FV) aims to check if a system 

meets certain properties by describing the system and the properties mathematically. It is often used for 

computer-generated/computer-checked proofs. In the present context, FV is used to check (and prove) if 

the implementation of the AE scheme and its constituents, under certain assumptions, indeed provide 

security. This can be done in several ways. One way is to check some given (hardware/software) 

implementation of the AE scheme and its constituents against a high-level formal description (written in 

some proof-assistant such as Coq) of the AE along with its security properties.  Another way is to begin 

with a high-level description in a proof-assistant, which is known to be correct, and then generate a 

machine-checked verified C/Verilog code out of it. One interesting goal would be to check if such machine-

generated codes indeed provide the required security. We also acknowledge that formal verification tools 

can be used to verify security properties of masked implementations.  

 

2.2.2.1. Open challenges and needs 

Even though several AES modes of operation exist in the literature, to the best of our knowledge they do 

not formally verify the scheme itself against the corresponding implementation. Given the context above, 

the target of the REWIRE project is to come up with new symmetric-key operating modes (i.e., AE) 

protected against passive side-channel attacks. The main innovation in this part is that the side-channel 

security should not depend on any implementation-level countermeasure [REF-52]. This is an important 

design goal as it gives freedom to implement the scheme on any IoT platform. Also, the implementation 

does not expect any special expertise from the engineer. Early research papers in this direction have 

recently appeared in the literature. However, so far, they were limited to academic proposals and, to the 

best of our knowledge, have never been realized in a deployment-friendly manner. Thus, there is a need 

on an AES-based schemes that provide side-channel security by the design implemented in hardware 

with a parallel architecture (which is available in several IoT-targeted embedded devices). An example of 

this theoretical construction is called LRBC2 [REF-53] and provides side-channel security by the design 
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of the AES mode. If certain physical properties can be ensured for this physical building block (which are 

easily verifiable in a test lab), then we can provably ensure integrity in the presence of leakage. The only 

resource that needs to be protected in this case is a long-term secret key. Since the long-term secret is 

used only twice for encrypting a long multi-block message, it has very limited leakage if the AES hardware 

adheres to the easily testable and achievable physical properties. Other than this physical property, the 

rest of the leakage-related properties of the mode are attributed to its correctness, and, therefore, can be 

easily verified by automated formal analysis.  

 

2.2.3. Trust Governance of IoT environments and embedded devices using 

open standards 

A core research pillar of REWIRE is the trust governance of IoTs and embedded devices. This trust 

governance is based on the underline Root-of-Trust (RoT) such as the Trusted Execution Environments 

(TEEs). However, existing solutions still lack a precise definition to systematize their design, making each 

manufacturer offer a different implementation targeting different applications. Also, the adoption of open 

standards can lead to simpler system designs and could enable more efficient trust management 

mechanisms. 

 

Intel Software Guard Extension. Intel Software Guard Extension (SGX) is an x86 instruction set 

extension that offers hardware-based isolation to trusted applications that run in so-called enclaves [REF-

54][REF-55][REF-56]. Enclave isolation leverages dedicated hardware-protected memory called Enclave 

Page Cache (EPC). The OS is responsible for loading the enclave's software in the EPC while the 

processor keeps track of deployed enclaves and their memory pages in the Enclave Page Cache Map 

(EPCM). The latter allows the hardware to restrict access to EPC from processes running at higher 

privilege levels, including the OS or the hypervisor. In particular, the Memory Management Unit (MMU) 

uses the EPCM to abort any attempt to access the enclave memory that has not been issued by the 

enclave itself or that does not comply with the specified read/write/execute permissions. Attestation allows 

the platform to issue publicly verifiable statements of the software configuration of an enclave. In 

particular, each application enclave has two identities: one called MRENCLAVE formed by the hash of 

the enclave binary loaded into memory, and the other identity is called MRSIGNER which identifies the 

enclave developer. During attestation, a designated system enclave – named quoting enclave – outputs 

a so-called attestation report, i.e., a signature over both identities of the enclave to be attested so to certify 

that the application runs in an enclave on an SGX-enabled platform. The attestation protocol used by Intel 

SGX [REF-57] is an adaptation of the so-called Enhanced Privacy ID (EPID) [REF-58]. The latter is a 

privacy-enhanced version of a group signature scheme that provides some degree of anonymity to the 

platform where the enclave to be attested is running. In particular, EPID allows two attestation reports on 

the same enclave to be unlinkable, i.e., no verifier can tell if the two reports were issued by the same 

quoting enclave on the same platform or by two different quoting enclaves on two different platforms.  

 

SGX also allows enclaves to store encrypted data on disk. This is achieved with a sealing interface that 

uses hardware-managed cryptographic keys. Sealed data is encrypted and authenticated using keys that 

are dependent on the platform and on one of the enclave identities. Sealing data against the MRENCLAVE 

identity ensures that only enclaves loaded with the same binary on the same platform can unseal it; on 

the other hand, sealing data against the MRSIGNER identity ensures that all enclaves running on the 

same platform and issued by the same developer (hence, with the same MRSIGNER) can unseal it. Data 

sealing does not provide freshness, i.e., an enclave that periodically seals its state to disk, has no means 

to tell if, upon unsealing, the data received is the latest state. This implies that enclaves can be rolled 

back to previous state [REF-59]. Intel SGX was shown to be vulnerable to side-channel attacks based on 

cache [REF-60], page-faults [REF-61] as well as so called speculative execution attacks [REF-62]. 

 

RISC-V. RISC-V was designed as an open-source Instruction Set Architecture (ISA) with the goal of 

providing a stable ISA, well-designed and based on well-established principles that could be used 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 10 of 177 REWIRE D2.1 

  

      

academically or industrially. The original authors of the RISC-V ISA have surrendered their rights to the 

so-called RISC-V foundation, who allows unrestricted use of the ISA for design of software and hardware. 

This reduces the cost of innovation and should attract long-term support. To this end, the base ISA and 

its extensions are developed between the industry, the research, and the educational communities. The 

ISA is designed to be modular, that is, the ISA base implements a simplified general-purpose processor, 

and designers can add unrestricted number of extensions to this base. Such extensions may or may not 

be the ones that have already been ratified by the foundation. This approach allows RISC-V processors 

to support a wide variety of use cases, e.g., low-power, performance, or compact implementations suitable 

for embedded systems or high-performance CPUs. According to the Manual [REF-63], RISC-V defines 3 

privilege modes, namely Machine Mode (M-Mode), Supervisor Mode (S-Mode) and User Mode (U-Mode) 

ordered from high to low degree of privileges (Hypervisor Mode (H) will be the 4th mode). The M-mode is 

the only mandatory mode in a RISC-V processor. Code running in M-Mode is considered inherently 

trusted, as it has full-access to the hardware.  

 

TEEs in RISC-V. Sanctum [REF-64] was the first designed proposed for RISC-V mimicking the design of 

SGX but fixing some of its known shortcomings. Keystone [REF-65] developers point out that commercial 

designs are not only closed but also fixed. This limits the possibilities to add new features or to remove 

the unused ones to adhere to the small code base principle. Therefore, they designed a fully customizable 

security monitor and provided a framework to configure, build, and instantiate customized TEEs. CURE 

[REF-66] allows different kinds of TEEs to adapt to the needs of the applications that require such 

protection, e.g., it allows kernel-space enclaves, user-space enclaves, or sub-space enclaves. Komodo 

[REF-67] was a SM originally designed for ARM that was formally verified to make sure that the security 

properties it was promising hold for every possible scenario. It was later ported to RISC-V and similarly 

verified. Open-source proposals also fail to adhere to one single standard that would made the tasks of 

the developers easy and the TEEs compatible between different platforms. Aiming for compatibility and 

standardization, GlobalPlatform [REF-68] has proposed an API to handle and communicate with TEEs. 

The Open-TEE project [REF-69], presents an open-source implementation. Although it was originally 

designed for ARM TrustZone, it is designed so it can be compatible with any underlying technology. 

Therefore, Keystone [REF-65] could be extended and adapted to adopt the GlobalPlatform specifications.  

 

The TEE designs based on RISC-V use the different security primitives available in the specifications, 

and therefore in the processors, to achieve some of the goals of the TEE e.g., isolation. Namely, RISC-V 

based TEEs are built relying on Physical Memory Protection (PMP) registers and on the aforementioned 

privilege modes. The Security Monitor running in Machine mode will take care of handling the PMPs and 

will manage context switches from and to the TEE. The PMP unit provides per-hart machine-mode control 

registers to allow physical memory access privileges (read, write, execute) to be specified for each 

physical memory region [REF-63]. The size of such regions is platform-specific, but the standard PMP 

encoding supports regions as small as four bytes. PMP checks are applied to all memory accesses whose 

effective privilege mode is S or U, including instruction fetches. For TEE designs, the PMPs are configured 

so the enclave memory can only be accessed by the enclave itself and the SM, which is considered 

trusted as it manages the TEE. Additionally, RISC-V defines an Input/Output Memory Management Unit 

(IOMMU) that is used to regulate the access to main memory by peripheral devices in a computer system. 

Without IOMMU, malicious peripheral devices can directly access memory through Direct Memory Access 

(DMA). IOMMU introduces the necessary data structures for mapping peripheral devices to individual 

address spaces while maintaining compatibility with existing page table formats. Further, it is designed to 

be flexible, scalable and to allow integration with virtualization-based systems. 

 
Keystone’s Security Monitor exclusively uses standard RISC-V features, making it easy to port to different 
hardware platforms able to work on RISC-V. This can also serve a purpose of defending against certain 
attacks, without any application changes, by only customizing the Security Monitor (SM) for a specific 
platform so that it can defend the enclave against a physical attacker or cache side-channel attacks [REF-
70]. The SM is trusted machine mode software that does not perform any resource management, only 
determines, and enforces security boundaries on physical memory regions and acts as the Trusted 
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Computing Base (TCB) for the system.  There are several benefits for using an M-mode software as the 
TCB [REF-71]: 

• Programmability: Unlike microcode, we can build M-mode software in existing programming 
languages (i.e., C) and toolchains (i.e., gcc). 

• Agile Patching: Since the SM is entirely software, it is possible to patch bugs or vulnerabilities 
without involving hardware-specific updates. 

• Verifiability: In general, software is easier to formally verify than hardware. 
  
The SM can also be extended with further features if needed. TEEs are becoming a commodity in a 
number of proprietary systems, but Keystone is the first open-source framework for building TEEs. Not 
only the capabilities of it, but also the recentness of Keystone (some introductory papers date from only 
2020) make it even more interesting from the perspective of innovation in REWIRE. 
 

2.2.3.1. Open challenges and needs 

All REWIRE use cases are based on scenarios where low battery consumption and smaller footprints are 

preferred. The adoption of open standards (e.g., RISC-V and Keystone) has revealed new opportunities 

for trust governance of IoT environments and embedded devices, yet several challenges need to be 

addressed by the REWIRE project. For instance, while the resource constraint embedded devices of IoT 

environments mandate the adoption of lightweight TEE solutions, Keystone presents itself with limited 

documentation and many in-progress features.  

 

Also, until now many solutions for IoT environments were based on TrustZone. However, that vendor-

locked option only enables one big, isolated area, making it very hard to establish multiple isolation 

domains [REF-72].  In addition, in commercial solutions each vendor rolls out its own TEE implementation 

with a particular design for their chosen threat model, and consequently present limited design options for 

adopters, who are required to make an effort to port their application to run in their target TEE, while these 

commercial solutions most times are not compatible with other architectures. Further, closed designs and 

scarce documentation limit the capabilities of researchers to analyse their security properties. Therefore, 

with the development of RISC-V, a number of proposals to build TEEs based on it appeared. Moreover, 

very diverse technologies must be integrated for the different use cases; thus, working with RISC-V based 

hardware seems optimal and a guarantee that future developments could be added to the platform more 

easily (openly), which adds to the sustainability and exploitation dimensions of REWIRE.  

 

2.2.4. Runtime monitoring of IoT trustworthiness and operational assurance 

of Systems-of-Systems 

A core research direction of REWIRE is the efficient runtime monitoring and the operational assurance in 
resource constrained Systems-of-Systems (SoS) based on novel attestation schemes. 
 
Remote Attestation. Attestation is the process by which one party, the ‘Verifier’, assesses the 
trustworthiness of a potentially untrusted peer, the ‘Prover’. In all attestation methods, evidence is 
gathered and signed by a more trustworthy attester [REF-73]. Remote attestation was first introduced by 
the Trusted Computing Group (TCG) during the first decade of the 21st century. TCG specified a Trusted 
Platform Module (TPM-based solution for verifying the identities of loaded boot images [REF-74]. This 
was followed by key attestation for smartphones, verifying that a credential is protected by the device’s 
TEE [REF-75]. In recent years, there has been a large interest in various remote attestation protocols, 
including swarm attestation [REF-76], anonymous attestation [REF-77], and mutual attestation [REF-78].  
 
Three main remote attestation approaches proposed in the literature (a) the software-based, (b) the 
hardware-based, and (c) the hybrid, based on the underlying RoT. Software-based remote attestation 
schemes do not require a hardware RoT. Software-based remote attestation constitutes of self-
measurement mechanisms implemented entirely in software and/or formally verified. Even though 
software-based solutions can reduce cost and be widely adopted, most of them build upon strong 
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assumptions. Hardware-based techniques perform remote attestation based on a dedicated hardware 
component, e.g., TPM. Hardware-based attestation can provide higher security than software-based ones 
since the tamper-resistant hardware ensures the correctness of the attestation results. However, 
hardware-based solutions are inapplicable to devices (e.g., IoT) that are not provided with the customized 
hardware components in the production phase. Hybrid attestation schemes leverage the advantages of 
both hardware-based and software-based schemes and rely partially on dedicated hardware.  
 
Configuration Integrity Verification. Configuration Integrity Verification (CIV) focuses on the correct 
configuration state of a platform (e.g., configurations or binaries) that it has not been compromised by a 
malicious party, ensuring the trustworthiness of the device configuration [REF-79]. However, static remote 
attestation, such as CIV, provides no information about the order in which instructions within the binary 
execute during runtime. More specifically, control flow hijacks [REF-80], code reuse attacks [REF-81] or 
return-oriented programming [REF-82] can change the order in which instructions execute without 
modifying the binary. These types of attacks are considered the most devastating since they try to exploit 
memory- and data-related vulnerabilities for altering the execution path of the underlying system 
processes and cannot be detected by static remote attestation techniques, since the binary remains the 
same. 
 
Control-flow Attestation. To address this limitation, Control Flow Attestation (CFA) [REF-83][REF-84] 
augments static remote attestation to provide to the Verifier with an unforgeable control flow proof 
containing the order in which the instructions of the attested binary have executed. As such, CFA enables 
the detection of control flow hijacks and code reuse attacks, even when these attacks do not modify the 
installed binary. In other words, CFA is used to verify that the execution flow or a Control Flow Graph 
(CFG) of a software process running on a device is benign and has not been compromised or influenced 
by an attacker. 
 
Tracing. One of the core building blocks in any attestation scheme is the underline tracing mechanism 
capable of extracting the necessary system measurements to be used for verification. Several open-
source tracers exist in the literature such as the Unix-based ftrace tool [REF-85] that provides static and 
dynamic tracing and SystemTap that provides dynamic tracing based on Kprobes, Jprobes, and Uprobes 
[REF-86]. However, both ftrace and SystemTap are TRAP-based methods, meaning that they consume 
a significant number of resources, which is infeasible for resource-constrained devices. DTrace [REF-87] 
is another dynamic tracing mechanism, that offers very limited optimizations, which limits its applicability 
too. Linux Trace Toolkit Next Generation (LTTng) [REF-88] is another tracing tool that adds up 
considerably the collective tracing impact on the target software for long runs in resource-constrained 
devices [REF-89]. The main tracing approaches in the literature are a) software tracing, b) hardware 
tracing and c) hardware-assisted software tracing. 
 

2.2.4.1. Open challenges and needs  

Several challenges need to be addressed in the context of REWIRE project. For instance, an open issue 
is how to address the non-efficient attestation procedure, especially the CFA in resource constrained 
devices is infeasible. Thus, REWIRE needs to investigate more efficient attestation schemes that consider 
only the minimum number of properties to be verified minimising the produced overhead, in combination 
to the formal verification of software and hardware co-design. On top of that, a research question that is 
erased is how to extend the functionalities of the underline TEE (e.g., keystone) to support the new bread 
of attestation schemes. In parallel, in all tracing approaches, there is always a compromise between 
performance, security, and usability. This sets the challenge ahead on how to provide tracing capabilities 
capturing the requirements of REWIRE remote attestation while striking a balance between the precision 
of monitored system traces, and efficiency. Last but not least, an open question that might be considered 
in the context of REWIRE is how to capture the sequence of ISA commands in the context of RISC-V or 
in another research direction is how to use monitoring hooks. 
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2.2.5. Decentralized identity management and trust-aware continuous 

authentication and authorization 

The basis of decentralized identify management is the recent developments in Self-Sovereign Identity 
(SSI). SSI is an umbrella term for an identity management system and is a digital identity that is in the 
control of the holder and does not depend on a centralised registry, Certificate Authority (CA), or identity 
provider. The main building blocks for SSIs are decentralised identifiers and verifiable credentials. The 
authors of [REF-90] describe the architectural stack of a typical SSI system. Many SSI systems (e.g., 
Hyperledger Aries) implement this stack, which suggests that DIDs, blockchain and verifiable 
credentials/presentations are necessary for an SSI system. 
  
Decentralised Identifiers. Decentralised Identifiers (DIDs) are unique identifiers that in a similar way to 
URLs resolve to a DID document that contains the data necessary for the holder to prove that they own 
that identity. At its simplest, the holder (usually the owner of the identity-related information) will generate 
an asymmetric key pair and the public key will be included in the DID document together with details of 
the algorithm being used. When challenged to confirm ownership the holder can use the private key to 
sign the challenge, and this can be verified by the challenger using the given public key. DIDs are being 
standardised by the World Wide Web Consortium (W3C) [REF-91]. Additionally, the DIDComm 
Messaging specification aims to provide a secure, private communication methodology built atop the 
decentralized design of DIDs [REF-92]. 
 
The DID documents need to be stored on a data registry made generally available so that the DIDs can 
be resolved. This data registry could be a permission-based web domain or a distributed ledger (either 
permissioned or permissionless). There are benefits and drawbacks to each choice [REF-93]. However, 
permissioned or permissionless, the distributed ledger has a clear advantage in that it is tamper-proof. In 
the context of SSI, the authors’ of [REF-93] provide an evaluation of whether trust can be obtained from 
a distributed ledger such as a Blockchain (BC) infrastructure. In the permissionless setting it is found that 
trust requirements are not met since there is no guarantee that the issuer is who they claim to be, or that 
the issuer will behave honestly when issuing credentials. In permissioned BC, the burden on users’ and 
verifiers is reduced since an administrator is introduced to check the consistency of transactions and 
control what is logged on the ledger – this means a reliance of trust in the administrator.  
  
Verifiable Credentials. Verifiable Credentials (VC) are statements that the holder has a given credential 
or satisfies some specified condition. In general, the credential will be provided by an issuer who confirms 
the identity of the holder and checks that they also have the necessary credential (e.g., a driving licence). 
The generated VC, to be verified, must contain details of the holder, the DID of the issuer, information 
about how the credential being confirmed and details of how the issuer signed the information in the VC 
(e.g., which crypto algorithm was used). Both the holder’s DID, and any VCs are held in a digital wallet 
for security purposes. This wallet can be in an edge environment or cloud environment, depending on the 
application.  
 
Verifiable Presentations. The holder may have many VCs and can use all, or a selection of them, to 
create a Verifiable presentation (VP). What information is included in a VP is under the control of the 
holder. Both VPs and VCs are standardised by the W3C [REF-94]. In a similar way to the use of OAuth 
and Jason Web Tokens (JWT), a VP can be used for trust-aware authorisation. The key used to generate 
the VP is under the control of the digital wallet, while access policies are used to restrict its use and 
therefore control whether the device can get access, or not. In general, the use of the key can depend on 
the assessed trustworthiness of the device. In [REF-95] an identity management system is proposed 
using W3C verifiable credentials and Fast IDentity Online (FIDO). Whilst it is not called an SSI system, it 
shares some properties of SSI systems, e.g., decentralisation of identity management. This paper 
provides more detail regarding the necessity of DIDs for SSI.   
 
DIDs, VCs and VPs use proofs (e.g., signatures on their data). The current mechanisms used for these 
proofs is described in the W3C documents relevant for data integrity and for proof of ownership or 
authorship [REF-96][REF-97]. In addition, proofs that allow presentations to confirm ownership of certain 
credentials while keeping other information private, are of particular interest. Known examples exploring 
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these technologies are: 

• The European Blockchain Partnership (EBP). The EBP was set up in 2018 by the EU to use 
distributed ledger technology to enable public administrations, businesses, and individuals to 
create trustworthy Europe-wide services. To do this, the EBP defined a specification and made 
provision for the European Blockchain Services Infrastructure (EBSI) [REF-98]. This infrastructure 
is in place and currently being used by 20 projects that have joined the early adopters’ scheme. 
The system allows a range of digital wallets to be used for storing the credentials.  

• Microsoft Azure Active Directory Verified Credentials [REF-99]. This system can use a distributed 
ledger (Bitcoin or Ethereum, for example) or a permission-based web domain. In this case the 
Microsoft Authenticator App is used to store the credentials.  

  
While the discussion above has talked of holders and referred to physical entities like driving licenses 

these protocols and procedures can be used for any device with a unique identity and has a digital wallet 

to securely hold the keys and other necessary data.  
 
Anonymous Credentials. The AnonCreds working group is currently trying to produce specifications for 

Anonymous Credentials (AC) which are the primary standard for Zero-Knowledge Proof (ZKP)-based 

verifiable credentials. The v1.0 specification is based on an open-source verifiable credential 

implementation of AnonCreds that has been in use since 2017, initially as part of the Hyperledger Indy 

open-source project and now in the Hyperledger AnonCreds project [REF-100]. An AC [REF-101] can be 

thought of as a special case of VCs. To see this, we make the following observations: 

 

W3C VCs have the holder (sometimes called the prover) binding process occur without any additional 
interactions between the holder and the issuer, thus, there is a lack of holder privacy. The AnonCreds 
specification counters this by requiring that the holders are bound to the AC by a non-correlatable secret 
only known to the holder. This secret is called a link secret, which can be viewed as a blind attribute. This 
alternative to persistent identifiers means that selective disclosure of attributes is possible. Observe that 
most AC schemes encode more than one attribute and a key goal of research in this space is minimal 
disclosure. For practicality and real-world implementation, pseudonyms are a useful tool in AC schemes 
[REF-101]. Access to a pseudonym means attaching a consistent alias to each credential. This alias can 
then be used to maintain a registry of which credentials have been revoked.  
 
One piece of terminology that needs to be distinguished is the use of the term “proof presentation” in the 
W3C VC and AnonCreds specifications [REF-94][REF-100]. This term describes the holder presenting 
one of three items to the verifier: (a) all the data in the credential, (b) part of the data in the credential (a 
partial disclosure) and (c) a ZKP for some data in their credential. Using ZKPs is a critical aspect of 
Hyperledger AnonCreds [REF-100]. Explicitly, it is not the actual VC that is presented to the verifier, but 
rather a cryptographically derived proof that allows the data in the credential to be presented securely. 
Therefore, the user can retain and control privacy whilst responding to questions like "Are you in the age 
category of 25-30?" Alternatively, the W3C standard for the Verifiable Credentials provides the same basic 
functionality as AnonCreds, such as supporting ZKPs, but not all W3C VCs support being asserted as 
ZKP responses. The choice of whether to enable this capability is left up to the credential issuer, therefore, 
VCs as per the standard are not viewed as AnonCreds. For a holder to assert a ZKP response in the VC 
data model, they must use a credential that has been created to allow for this purpose.  
  
Identity Wallets. Privacy preservation has led to the concept of user-centric identity management, using 

identity wallets, applied to the DID domain to support the SSI paradigm. Typically, a wallet stores and 

manages cryptographic material and verifiable credentials/presentations related to identity-based 

attributes. Applying digital wallets to the DID domain is useful to avoid digital identity-related data being 

stored and managed by a central authority. Moreover, improving the security and privacy guarantees of 

identity-related information is desirable, as is user control of their identity-related information. The authors 

of [REF-102] have recently provided a systematic review of many works related to digital wallets to 

contextualize the terms and concepts used across recent literature. Essentially, a DID wallet is software 

operating in a remote (cloud) or local (edge) environment (sometime referred to as an "Agent") for the 

purposes of identity-related data storage, management, and sharing. Given such a wallet, a user controls 

https://www.hyperledger.org/projects/hyperledger-indy
https://wiki.hyperledger.org/display/anoncreds
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and manages their data stored in the wallet - including removal/reviews of the identity-related information. 

Moreover, the user can decide when and where (in or out of the wallet) the data is shared and stored. 

Further features include allowing for the combination of identity-related data when the data is outside of 

the wallet, upon the users' consent. The underlying environment should also support the recovery and 

back-up of a users' identity-related information.  

 
In the context of wallet implementation, [REF-103] recently delved into the issues surrounding trust and 

DID wallets (recall [REF-93]). The authors’ work addresses this issue by providing a systematic analysis 

of a selection of available digital identity wallets on the market in terms of the technologies used to 

establish trust and controlled sharing of data. In the context of regulation, federated identity-management 

system eIDAS is working to standardize cross-border authentication processes across EU member states 

by utilizing wallets in the DID domain to support SSI. However, there are challenges facing this process 

as discussed in [REF-104]. In particular, the contradictions of SSI and eIDAS requirements related to 

trust, privacy and data-sovereignty. It is noted by [REF-104] that Distributed Ledger Technology (DLT) is 

not necessary to support SSI. The pervasiveness of data-stored using DLT contradicts requirements like 

privacy-preservation and features such as erasure of identity-related information [REF-93]. Therefore, 

[REF-104] concludes the restriction of DLT to meet a sufficient level of trustworthiness, privacy, and data-

sovereignty. The authors’ of [REF-105] provide a review of the top five mobile cryptocurrency wallet. 

Revelations from [REF-105] ought to be taken into consideration, especially with regards to the users’ 

experience. Specifically, shortcomings such as a users’ misconceptions, some of which can be traced 

back to a reliance on their understanding of conventional centralized systems. The result is that users are 

often presented with unmet expectations. Based on the findings of [REF-105], the authors provide 

recommendations on how to design cryptocurrency wallets that both alleviate issues and counteract some 

misconceptions to better support onboarding customers.  

   
TC-based Identity Wallets. Trusted Component-(TC) based identity wallets can be viewed as more 
secure than SW wallets, however, their capabilities, such as accessibility, can be constrained [REF-106]. 
The authors of [REF-106] compare HW and digital crypto wallets, concluding that both wallets are very 
secure in the right scenario and with appropriate use. In [REF-107], different approaches to implementing 
digital wallets using TPM-based functionalities are studied. Traditionally, a TPM is HW utilized for PKE, 
hashing, MACs, Direct Anonymous Attestation (DAA), key migration, and data migration. In the context 
of digital wallets, TPM-based monotonic counters can be used as a building block for implementation. 
Informally, a virtual monotonic counter is a mechanism (hardware/software) that stores a value and 
provides the {read, increment} commands for access to the value. In conclusion, [REF-107] determined 
that a hash-tree mechanism achieves lower performance overheads compared to log-based ones. 
However, the current TPM specification does not support the former. Therefore, current mechanisms for 
TPM-based wallets have relatively high overheads.  
 

2.2.5.1. Open challenges and needs 

The most prevalent challenge with respect to DID management within the SSI paradigm will be trust-
establishment of credential issuers to ensure trust-aware continuous authentication and authorisation. 
This issue is highlighted in [REF-108], which focuses on balancing trust and governance requirements in 
a decentralised, privacy-friendly identity management system. As a direct consequence, REWIRE will 
need to propose a novel, practical, and scalable mechanism to support verifiers to externally verify their 
trust in credential issuers. Following the approach taken in [REF-108], this could be achieved by creating 
a trust registry component within the SSI ecosystem such that elements in the registry, coupled with 
additional information, will support a verifier in making informed trust decisions. Moreover, REWIRE needs 
to consider the appropriate use of DLT to meet a sufficient level of trustworthiness, privacy, and data-
sovereignty. Recall the debate regarding federated identity management systems and SSI ecosystems 
presented in [REF-93][REF-104]. DLT is not necessary to support SSI, however, given its use in REWIRE, 
the revocation or renewal of identity-related data will be a challenging task. This is due to the persistence 
of stored data which contradicts properties like privacy-preservation. Moreover, ensuring the compatibility 
of digital wallets and VCs with the IoT ecosystem in REWIRE will also need to be carefully considered 
whilst additionally improving efficiency and costs of handling large amounts of data.  
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2.2.6. Firmware and software automated validation and vulnerability 

analysis  

Various tools and platforms exist for the unpacking of firmware. The most accurate and widely applicable 
ones are Binwalk [REF-109] and BANG [REF-110]. These tools do not serve as specialised unpackers 
for firmware per se but can carve information from any blob of data. For example, these tools can 
recognise the used headers and unpack a compressed archive. In cases where no headers exist, they 
attempt to recognise a structure for identifying a method (e.g., a file system, a vendor-specific method of 
packaging firmware, a compressed file system, or a file type like an image) of storing information and 
finally they attempt to extract the information using this method. The firmware validation of the REWIRE 
project takes complete firmware images as input. This means various formats of packing said firmware 
must be supported, as different vendors tend to use different ways of packing their firmware. Moreover, 
unpacked firmware only contains the compiled version of the programs it uses, meaning the validation 
must support bytecode analysis. In general, four main approaches exist in the literature to analyse the 
firmware. 
 
Static Analysis. It can be analysed statically, where none of the firmware is run. The advantage of this 
approach is that it is always usable, and there are no dependencies on emulation or hardware. The 
disadvantage is that most firmware has interactions that are too complex to analyse statically.  
 
Dynamic Analysis. Second, firmware can be analysed dynamically by selecting individual components, 
such as an HTTP server, and emulating this. The emulation can then be analysed using techniques such 
as fuzzing, concolic execution, and taint analysis. Both its advantage and disadvantage are the targeting. 
It can effectively 'attack' single components and find flaws more quickly than a broad analysis. When not 
targeting the right attack surface it is prone to missing important flaws, however.  
 
Emulation. The firmware can also be emulated as a whole. The advantage of this approach is that the 
most accurate picture can be formed out of all emulation-based approaches, but the difficulty of achieving 
this is a disadvantage.  
 
Analysis on the hardware. Lastly, firmware can be analysed on the hardware was built for. Its obvious 
advantage is the guaranteed accuracy of the analysis. It does not scale well however, and it can be more 
difficult since there is relatively little control over the inner workings of any given device.  
 
In practice a combination of the above approaches is used, as they can complement each other's 
strengths and weaknesses. There are many ways to statically analyse firmware. Not all are included in 
this project, but a selection of the most widely used ones are included below: 
 
Static taint analysis. In taint analysis user input is marked as a ‘tainted’ source. Each action a program 
takes can spread this taint, such as copying information or using it as input for a calculation. The analysis 
can specify certain ‘sinks’, which are points in the program that should not be reachable by tainted data. 
If this happens anyway, the path through the program which allows this to happen is marked as suspect. 
Taint can be cleared from data, for example through input validation. In source code this technique can 
be applied more easily than in compiled programs, as the compiled program would need to be interpreted 
by something that is aware of the workings of the processor it was compiled for. 
 
Static symbolic execution. Symbolic execution parameterises user inputs. At every branch a program 
takes a constraint is tracked, where each path through the program will result in its own unique set of 
constraints. The constraints to each such set can be fed to an SMT solver, which can solve them and thus 
tell which inputs are required to follow this path through the program. In static symbolic execution a 
compiled program must first be disassembled and lifted to an intermediate language, which can then be 
interpreted by the symbolic execution engine. A downside to the technique is the path explosion problem, 
where the engine has to keep track of so many different paths and constraints that it runs out of memory. 
For example, given a loop in a program that loops one hundred times with a branching condition inside, 
2^100 paths would have to be tracked.  
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Control flow graph analysis. This technique can be used to fingerprint the behaviour of a program. In 
disassembled code it checks which basic blocks are connected to each other by control flow transfer 
instructions, such as jumps. A graph is created where each basic block is a vertex and each transfer to 
another basic block is an edge. This graph can be used for further analysis, or mitigation techniques such 
as control flow integrity protection. 
 
Like static analysis methods, there are many dynamic ways of analysing firmware. The most prominent 
ones are listed below: 
 
Dynamic taint analysis. Just as in static taint analysis all user inputs are tainted. However, in this case 
it is done while running the program that is being analysed. In practice this means that each register, as 
well as the stack and heap, have a twin that tracks whether the data it holds was influenced by user input. 
An advantage over static taint analysis is that many more unconventional inputs can be tried, which can 
result in unexpected behaviour that spreads taint further. 
 
Concolic execution. In concolic execution the program is executed as normal, using real user input. 
However, at every branch it also keeps track of constraints required by both paths. Multiple variants exist 
here, where both the path taken by the concrete execution and the path not taken are evaluated, or where 
only the concrete path is evaluated. The first approach still suffers from the path explosion problem, 
whereas the second approach provides less coverage. 
 
Fuzzing. In classic fuzzing, random input is sent to a program until it crashes. After it crashes the input 
which caused the crash is analysed to see why it made the program crash. In this manner unexpected 
behaviour of the program can quickly and easily be identified. In more recent years this technique has 
evolved to use more information from the program itself. The most well-known fuzzer is AFL++ [REF-
111], which uses coverage guided fuzzing. For each branch in a program a small snippet is inserted that 
signals “this path was reached” to the fuzzer. Inserting these snippets is called instrumentation, which has 
its own challenges for binary code and thus is described further down below. The fuzzer can use this 
information to determine when an input was interesting, i.e., reached a new path. Any interesting inputs 
are reused and mutated, whereas uninteresting inputs are discarded.  
 
Binary instrumentation can be approached in two different ways.  
 
Logical Approach. The first is the logical approach of disassembling the program, inserting the 
instrumentation code, patching internal references such as jump addresses, and reassembling the 
program.  
 
Sub-instructions. The second approach makes use of so-called sub-instructions, which requires an 
emulation platform to be used. This cannot alter the program itself, but allows specific instructions to be 
instrumented, or even specific addresses. The first approach is generally faster, since it could be run as 
native code. However, patching the internal references is a highly complex issue and sensitive to 
mistakes. The generally used approach is therefore the second one.  
 
In the context of REWIRE a solution that combines fuzzing and concolic execution will be adopted. A wide 
variety of techniques exist under the umbrella of fuzzing, which cannot all be covered here. In parallel, for 
the emulation of OS-level functions the Qiling project [REF-112] will be used, which in turn uses Unicorn 
[REF-113] for CPU emulation, Capstone [REF-114] for disassembly, and Keystone [REF-115] for 
assembling. Also, AFL++ will be used as a fuzzer, with angr [REF-116] as the symbolic execution engine. 
 
Monitoring Hooks. Attestation of the correct working of runtime processes requires constant information 
to be collected from these processes. This will be implemented by instrumenting these processes (e.g., 
using monitoring hooks on the processes) and having them report information to an agent running in the 
TEE. Since no access to the source code of the firmware is assumed, and monitoring should take place 
during runtime on embedded devices, REWIRE will make use of static binary instrumentation. 
Conventional solutions addressing the need for control flow integrity [REF-117] make use of dynamic 
binary instrumentation, which allows for a more general solution in these protections. However, these 
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solutions need to run together with the process they instrument, for example by adapting the loader used 
to run the process. Another existing type of solution is through the use of the control flow integrity 
extension of the RISC-V instruction set, Zisslpcfi [REF-118]. This solution is not yet usable in the REWIRE 
project since it is a tentative specification and would require hardware support for this specific extension, 
as well as adoption by developers. The need for runtime monitoring such as control flow integrity is 
highlighted by recent research showing the RISC-V architecture, like most other architectures, is 
susceptible to control flow hijacking [REF-119]. Existing solutions implementing static binary analysis aim 
for security and speed [REF-120], applicability for deeply embedded devices [REF-121], and a low 
memory footprint [REF-122]. Since the instrumentation will be used to implement control flow integrity to 
arbitrary firmware, the REWIRE project will focus on security and speed.  
 
In parallel with SECURA, Eight Bells conducts research and development efforts focused on firmware 
deployment and vulnerability analysis. Our work on researching additional tools for these purposes while 
also delving into existing literature to explore new methods and new vulnerabilities. The overarching 
objective is to help maximize the effectiveness of firmware deployment and analyzation efforts. 
 
For our first steps we explore tools such as: 
 
ISA Detect is a software utility employed in software development and system optimization processes to 
determine the specific instruction set architecture (ISA) supported by a Central Processing Unit (CPU) or 
microprocessor. This information is vital for developers as it guides decisions on how to compile code, 
optimize software performance, and ensure compatibility with the target hardware. The tool typically 
functions by examining the CPU's internal registers and hardware-specific characteristics to identify its 
ISA. Armed with this knowledge, developers can make informed choices about compiler settings, code 
optimizations, and software configurations to ensure efficient and effective execution on the target CPU 
architecture. 
 
Centrifuge: uses two new approaches to analysis of file data: DBSCAN, an unsupervised machine 
learning algorithm, is utilized to uncover clusters of byte sequences grounded in their statistical 
characteristics, or features. Byte sequences that encode identical data types, such as machine code, 
typically exhibit similar properties, making clusters a reliable representation of a specific data type. These 
clusters can be subsequently extracted and subjected to further analysis. To pinpoint the specific data 
type within a cluster, one can often forgo machine learning and instead rely on the calculation of the 
Wasserstein distance between its byte value distribution and a reference distribution corresponding to 
a particular data type. If this distance falls below a predefined threshold for that data type, the cluster is 
confidently identified as that particular data type. Currently, reference distributions are available for high 
entropy data, UTF-8 English, and machine code tailored to various CPU architectures. The Wasserstein 
distances between the data in the clusters and the reference distributions are assessed to determine the 
type of data in the clusters after DBSCAN locates them. Centrifuge utilizes ISAdetect to determine the 
target CPU of any machine code it finds in the file. 
 

2.2.6.1. Open challenges and needs 

While advances in the automation of binary analysis have uncovered many flaws in software, fully 
automated software testing meets several problems. In most fuzzing and symbolic execution solutions a 
so-called ‘harness’ is created, which is a program that encapsulates the targeted program. By doing so it 
can, for example, target specific interesting functions of the target program, such as a parser. When 
aiming to automate such testing for general cases, the software needs to undergo preliminary analysis 
before testing it using these techniques. This preliminary testing should yield information such as which 
input vectors the program uses, what input formats these use, and what kind of protocols are used by the 
program. Only then could an effective harness be created automatically. State of the art provides little 
towards this need, which is a challenge that needs solving in the REWIRE project. Without doing so, the 
automated analysis would not be usable on all software, and where usable would usually not be fast 
enough to be feasible. 
 
A second challenge within the aforementioned challenge comes with the specific use cases in REWIRE, 
which are all embedded systems. Since such systems generally rely more heavily on hardware-specific 
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implementations, scaling automated analysis requires either control over said hardware or emulating the 
software. For the sake of scalability, the REWIRE project opts for emulation. Embedded systems tend to 
rely on peripherals for their functioning, which in some cases are crucial for the correct functioning of the 
software. Automatically detecting such peripherals based on the software is a challenge and influences 
the accuracy of a testing harness as well. Last but not least, another challenge is how to model these 
monitoring hooks (e.g., binary instrumentation) for the purpose of formal verification. This is crucial for 
verifying that the security and correctness of the binary is not tampered with or violated by the 
instrumentation process.  
 

2.2.7. Service certification and auditing through blockchain-based secure 

information and data exchange 

Blockchain technology can be used to provide a secure and decentralized platform for service certification 
and auditing. With the use of blockchain, service providers can store and exchange their data and 
information securely, transparently, and immutably. 
 
Blockchain and Oracles (capabilities and data management). Blockchain technology has recently 
emerged as one of the promising solutions for data management systems. In general, blockchain is a 
decentralized ledger technology with a “chained blocks" data structure; every block header includes the 
root of a Merkle tree, a timestamp, and a hash of the previous block [REF-123]. When data inside the 
previous block is changed, the new hash is never referenced to another block, resulting in rejection by 
the network. Consequently, once data is committed to the chain, it is immutable, decentralized, traceable, 
and verifiable. Combining these properties with a data management tool can achieve the features, e.g., 
data integrity, increased security, and traceability to achieve better data management. The potential of 
blockchain as a data management system has been investigated in recent study [REF-124]. 
  
On the other hand, blockchains cannot pull in data from or push data out to any external system as built-
in functionality. This is known as the blockchain oracle issue, which highlights the inability of smart 
contracts to confirm the veracity of external data [REF-125]. To handle this problem, traditional 
blockchain-based systems usually use oracle services to record events that occur outside the blockchain. 
An oracle service can be regarded as a secure middleware to facilitate data communications between the 
blockchain and any off-chain systems [REF-126]. Using oracles in data management systems fills this 
gap and ensures that the real-world data fed into the blockchain is accurate and the smart contract is 
triggered properly. 
 
Secure Oracles. Traditional centralized blockchain oracles are efficient but susceptible to targeted 
attacks, e.g., a single point of failure. Decentralized oracles, although they avoid the issues, are often 
inefficient [REF-123]. In this respect, researchers are trying to build decentralized oracles using different 
mechanisms, but there is still room for improvement in terms of trustworthiness, scalability, efficiency, and 
privacy [REF-124]. To address these challenges, trusted hardware (e.g., Intel SGX or ARM TrustZone) 
could be combined with decentralized oracles to create such a "secure oracle" protocol. For example, 
TEEs can help address inaccuracies or inconsistencies in the external data source by enabling the oracle 
to filter out unwanted or malicious data before it is transmitted to the blockchain [REF-125]. In this way, 
trusted hardware could increase the trustworthiness of data filtering and collation, as well as the 
authentication of data sources, thus improving the efficiency of blockchain oracles and providing a secure 
and private data processing/filtering environment. Further research is needed in REWIRE to explore the 
full potential of this approach for real-world blockchain applications. 
 
On-off chain data management. In general, on-chain and off-chain data management are two different 
approaches to managing data in a blockchain network. Both on-chain and off-chain data management 
have their advantages and disadvantages. On-chain data management provides high transparency and 
immutability since all data is stored on the blockchain and can be easily audited. However, keeping large 
amounts of data on the blockchain can be costly and slow down the network's performance. Off-chain 
data management, on the other hand, can be more cost-effective and allow for faster processing and is 
therefore more popular. The recent state of the art in on-off chain data management for blockchain 
technology includes various solutions such as sidechains [REF-127], sharding [REF-128], and state 
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channels [REF-129]. Sidechains and state channels provide off-chain storage solutions while still 
maintaining the benefits of the main blockchain, while sharding allows for better network performance and 
scalability. The ongoing research in this area is focused on finding new ways to balance the benefits of 
on-chain and off-chain data management in the context of blockchain technology. 
 
Smart contracts for data collection. Blockchain was originally introduced as the underlying technology 
for Bitcoin. Now, with smart contract technology bringing powerful programmability, it is widely believed 
that blockchain can be applied to build decentralized systems in various application scenarios, e.g., 
healthcare, finance, energy trading, wireless communication, service allocation, electronic voting, and 
supply chain management [REF-130]. A smart contract is a tamper-proof and self-executing program 
running on the blockchain, which enables a much broader range of application innovations in addition to 
cryptocurrencies. The concept of smart contracts has also extended to other blockchain platforms, e.g., 
chaincodes [REF-131] and transaction processors [REF-132] are smart contracts offered by Hyperledger 
Fabric and Sawtooth, respectively. Smart contracts can be a powerful tool for automating data collection 
processes in a secure and efficient manner, which in many cases requires the help of secure oracles.   
 
Blockchain wallets and verifiable credentials. Blockchain wallets are digital wallets that are used to 
store and manage cryptocurrencies, such as Bitcoin and Ethereum. These wallets are built on top of 
blockchain networks and provide a secure and tamper-proof way of managing digital keys and assets. In 
this respect, TEEvault [REF-133] is a hardware-based key management solution for cryptocurrencies that 
securely stores and manages keys in an enterprise environment. The entire process of key generation, 
backup, and usage is completed inside a protected TEE, safeguarding keys from hacking or physical 
attacks. Verifiable credentials, on the other hand, are digital credentials that are based on blockchain and 
allow individuals to prove their identity, qualifications, and other attributes in a secure and tamper-proof 
manner. The state of the art on this topic involves the development of decentralized, tamper-proof systems 
for issuing and verifying digital credentials using blockchain technology. Some of the key developments 
include the use of DIDs to provide a decentralized and secure way of storing and sharing verifiable 
credentials [REF-134].  
 
Access control on blockchain. Since blockchain is a decentralized and distributed system, access 
control mechanisms are essential to ensure the security and integrity of the network. By implementing 
access control mechanisms such as public and private blockchains, cryptographic keys, role-based 
access control, and smart contract-based access control, blockchain networks can be configured to 
provide access only to authorized users [REF-135]. This reduces the risk of unauthorized access and 
tampering, thereby enhancing the trustworthiness of blockchain-based transactions. Some permissioned 
blockchains also involve special access control mechanisms. For example, in the Hyperledger Fabric 
framework, channel technology is used to create private communication channels between specific 
network participants [REF-136]. As blockchain technology continues to gain adoption in various industries, 
effective access control mechanisms will be crucial to enabling secure and reliable interactions on the 
network. 
 
Blockchain on certification and auditing. Data integrity ensures the correctness and consistency of 
data throughout its life cycle. It, therefore, plays a vital role in the design, implementation, and utilization 
of any data management system. The current solution for data auditing and certification is through third-
party auditing service providers such as Spectra [REF-137] . However, these centralized services are not 
immune to malicious auditors and therefore suffer from a Single Point of Failure (SPOF). Besides, the 
expensive commission fees also discourage companies from using these services due to increased 
operating costs. Blockchain and smart contracts have brought promising hints to address the challenges 
in the data auditing and certification process. It can replace the current process of expensive and not fully 
trusted third-party data audit process, saving time and costs [REF-138]. 
 

2.2.7.1. Open challenges and needs 

The advent of blockchain technology has opened new opportunities for secure, decentralized service 
certification and auditing, yet there remain several challenges that the REWIRE project must address to 
optimally leverage its potential. Blockchain's inherent immutability and decentralization offer robust 
solutions for data integrity and traceability, but limitations in pulling or pushing data from external systems 
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present a significant hurdle. The utilization of oracles, particularly secure decentralized ones combined 
with trusted hardware, has shown promise in addressing this issue. However, there are ongoing issues 
of scalability, efficiency, and privacy, which demand further research and development within the REWIRE 
framework. Moreover, striking a balance between on-chain and off-chain data management continues to 
pose challenges, particularly when handling large volumes of data in IoT applications. The use of smart 
contracts for automated and secure data collection could offer a solution yet requires careful integration 
with secure oracles. Additionally, while blockchain wallets and verifiable credentials provide robust 
mechanisms for access control and identity verification, ensuring these tools' compatibility and efficiency 
within the larger IoT ecosystem is another crucial task. Finally, the application of blockchain in certification 
and auditing is promising, yet the full potential of this technology in replacing conventional third-party 
services and reducing operational costs requires more investigation. The REWIRE project's focus on 
providing a comprehensive security assessment framework for IoT devices necessitates addressing these 
challenges to ensure secure and efficient data management, access control, and service certification 
within the IoT landscape. 
 

2.2.8. Secure distributed service operation through misbehaviour detection  

Presently many organisations rely on distributed service environments (e.g., IoT, Cloud computing, etc.) 
to provide critical services to their users; thus, it is of great importance to ensure their secure operation 
which in turn will allow such organisations to provide services to their users with greater confidence and 
peace of mind. Typically, distributed service environments are composed of multiple heterogeneous 
devices, distributed across different machines or nodes on a network that communicate with each other 
to provide various services to users. While this communication offers many benefits (e.g., scalability, 
flexibility, etc.), it also generates security and privacy challenges, as its difficult to ensure the security and 
correct behaviour of every device and service in the network, considering also that lately attacks have 
become more aggressive, and attackers have adopted a more strategic approach [REF-139]. Traditional 
security mechanisms rely on excluding external attackers who lack key credentials. However, if the 
malicious actor pretends to be a network node, these approaches are not very effective [REF-140] . 
Misbehaviour is a term commonly used instead of intrusions or attacks when addressing threats that are 
carried out by the participating nodes in distributed networks. In addition to attackers and malevolent 
participants, malfunctioning nodes are also included in the definition. Any node that transmits incorrect 
data while the hardware and software are acting as expected is considered to be misbehaving. 
Misbehaviour detection can help with these issues by offering an automated mechanism to find possible 
security concerns and inappropriate behaviour and take the necessary steps to lessen their 
consequences. Researching the relevant literature, three major categories of misbehaviour detection 
systems are identified [REF-139]: 
 
Node-centric. In this category, the system checks each node's behaviour to be in line with the protocol 
specifications. They can be further divided into (a) behavioural-based in which the detection in performed 
based on abnormal actions, and (b) trust-based in which each node has a trust-value, and it drops below 
a predefined threshold it is detected as a threat. 
 
Data-centric. In data-centric misbehaviour detection systems, the focus shifts away from the protocols 
and the model of the distributed network into the data that is shared between the nodes. Two 
subcategories are observed: (a) plausibility-based, in which checks are performed on the correctness of 
the data and (b) consistency-based, in which the relationship between the information that is shared is 
validated in order to decide the trustworthiness of each message. 
 
Hybrid. In hybrid systems, a combined approach is adopted in order to evaluate each node based on the 
data that is shared and the correctness is decided using a data-centric detector. 
 
In all of these categories, both the statistics of each node/device and the data that is shared between 
them can be used to train Machine Learning (ML) models in order to detect misbehaviour. Another 
classification [REF-141] can be made based on the mode of the misbehaviour detection: 
 
Local detection. The detection is performed independently to each node based on internal consistency 
checks. This approach does not rely on the responses of other nodes, but checks for plausibility, 
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consistency and behaviour. 
 
Collaborative detection. These systems use data detection schemes to monitor each node based on 
using the responses of neighbour nodes for misinformation.  
 
Global detection. In this category, a back-end system is used, and the detection is not only based on 
local or collaborative schemes. This operation may involve gathering information from each device over 
predefined period. 
 
AI-based misbehaviour detection in distributed IoT environments. In the next decade, it is projected 
that the Internet will be a seamless construction of common networks and connected devices [REF-142]. 
As a result, security becomes a hot problem in the IoT. Systemic security mechanisms and cryptographic 
security mechanisms are examples of existing security techniques. The possibility of network attacks, 
such as the volume of IoT service requests received in a short period of time or the availability of illegal 
access to specific services, may result in catastrophic failures [REF-143]. Therefore, in order to detect the 
threats, the use of misbehaviour detection is necessary for keeping the IoT networks secure and 
accessible. However, because of the sources and energy limitations of the IoT devices, it is often difficult 
to operate the complex misbehaviour detection techniques that are traditionally used. Therefore, together 
with the growing interest in Artificial Intelligence (AI), ML and its derivatives (e.g., deep learning) are 
becoming the focus of most research conducted on misbehaviour detection in distributed IoT systems. 
ML-based solutions can be divided into three subcategories [REF-139]: 
 
Traditional learning. Refers to techniques that aren't based on deep learning. They can be further divided 
into: 

1. supervised learning, where a labelled dataset is used to train an algorithm into classifying data 
or predicting the outcome. Supervised learning algorithms are classified into: 

a. classification, where the algorithm is used to classify data into specific categories, e.g., 
malicious or normal nodes. Commonly used models are Logistic Regression (LR), Support 
Vector Machine (SVM), Random Forest (RF), XGBoost, K-Nearest Neighbour (KNN), etc. 

b. regression, where the algorithm is used for example to predict the trust-value of a node 
based on a reputation system. Common models are Linear Regression (LR), Decision Tree 
(DT), etc. 

2. unsupervised learning, where no labelled dataset exists and instead the trained model tries to 
find patterns in the data structure. Can be further divided into: 

a. clustering, used to divide data points that are similar into groups that are easier to 
understand (k-means, hierarchical clustering, etc.) 

b. anomaly detection, which identifies unexpected events or unusual items in a dataset 
without prior knowledge (One class SVM, Elliptic Envelope, Isolation Forest, etc.) 

c. dimensionality reduction, transforms data from a higher dimensional to a lower 
dimensional space without losing important information (PCA, etc.) 

 
Deep Learning. A subset of ML that is based on deep artificial Neural Networks (NN), which have enabled 

advances in several applications due to their success especially in very large datasets with a high number 

of features. Can be further divided into 

1. supervised learning, which include Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN) as the most common model architectures, 

2. unsupervised learning, which includes the Autoencoder, a common architecture for anomaly 
detection in unlabelled datasets, that operates by compressing the input and reconstructing it. 
Calculating the reconstruction loss can be used to detect anomalies. 

 
Advanced ML concepts. 

1. Federated Learning (FL), a distributed training technique that is based on the collaboration of 
multiple nodes in order to build a global model without sharing the data outside of the nodes. 

2. Reinforcement Learning is a goal-oriented learning algorithm that trains to maximize a reward 
over time. 
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3. Generative Adversarial Networks (GAN), which are used to create new data similar to the input 
and consist of two networks that are trained together, the generator and the discriminator. 

4. Transfer Learning exploits the knowledge gained by solving a given problem to apply it in another 
related problem. For example, the knowledge of detecting DDoS attacks can be used to detect 
DDoS attacks in another network. 

5. Semi-supervised learning, where the training process combines learning on a small amount of 
labelled data with a large amount of unlabelled data during training. 

 
AI-based misbehaviour detection over system traces and attestation results. AI-based analysis of 
system traces and attestation results refers to the application of AI algorithms to these data sets in order 
to identify potential security issues or abnormalities. System traces are a log of system events (such as 
network traffic, file changes, log entries, etc.) that can give information about how a system behaves, 
whereas attestation results are a collection of measurements that confirm the security and integrity of a 
system's hardware, software, and firmware components. Network logs are thought of as an incredibly rich 
source of information in this area that may be used for a variety of tasks, including estimating the network's 
current operational health and identifying and preventing possibly hostile activity [REF-145]. To this end, 
ML models have been frequently used for network intrusion detection systems [REF-146] and can be 
divided into shallow ML and Deep Learning (DL) based on their model architecture.  
 
These techniques can be further discriminated into a) supervised, b) semi-supervised and c) unsupervised 
learning based on the existence of anomalous labels on the training dataset. However real system traces 
and attestation results usually lack labelled datasets. On that matter, unsupervised anomaly detection 
systems can discriminate abnormal behaviour without the use of labelled data. In these situations, 
clustering-based strategies [REF-147][REF-148] have proven to be a practical solution; however, more 
advanced techniques, relying on Deep Neural Networks (DNNs), are being studied [REF-149] due to the 
vast and extremely heterogeneous structure of network traffic data. Eventually, the unsupervised network 
anomaly detection problem has been successfully addressed by generative models. 
 
In a publication [REF-150], the authors used a newly published network traffic dataset, to develop a novel 
deep learning approach for misbehaviour detection using generic features at packet level. They evaluated 
their proposed schemes using accuracy, precision, recall and F1 measures and demonstrate significant 
results. Nevertheless, they highlight the lack of reliable datasets that include misbehaviour. 
 

2.2.8.1. Open challenges and needs 

All ML-based systems, have their challenges and risks that require the appropriate attention in order to 
ensure a smooth and robust operation, especially for critical tasks like misbehaviour detection. 
  
Adversarial attacks: These systems are vulnerable to adversarial attacks, in which the attacker can infer 
vital information about the model in order to launch attacks that may poison its predictions [REF-144]. 
 
Quality of data: The models also need a sizable and trustworthy training set to work properly thus 
sometimes protection is not guaranteed against zero-day vulnerabilities. Also, data generated from 
various sensors and devices is usually diverse and needs a considerable effort in preprocessing and 
homogenisation. 
 
Labelled data: Datasets annotated with misbehaviour examples are not often available in order to train 
a supervised classification model. Therefore, unsupervised learning techniques are utilised, although 
discriminating anomalous patterns from normal is not an easy task [REF-145]. 
 
Scalability: These ML-based solutions are relatively difficult to deploy and certify for embedded use. 
Also, scaling a real-time misbehaviour detection system to a network of thousands of devices can have 
serious effects on the performance and accuracy [REF-151]. 
 
Concept Drift: Ultimately, the model may need to be retrained in order to recognise novel, previously 
unidentified misbehaviour types due to environmental changes that tend to introduce a shift in the data 
distribution over time. 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 24 of 177 REWIRE D2.1 

  

      

 
Explainability: In order for the operators to understand and take actions, the misbehaviour detector’s 
predictions need to be interpretable and explainable. 
 
Security: Access to sensitive data is often required for training the ML algorithms, leading to privacy 
concerns. Appropriate technologies need to be used in order to ensure the protection of this information. 
 
Resources: In most cases, depending on the ML model architecture, these systems require resources 
that are not abundant in IoT devices, hence developing lightweight solutions while also maintaining the 
performance is very important. 

                                                                                         
Although these challenges are crucial, they do not affect the rapid adoption and development of ML-based 
techniques being used in misbehaviour detection systems. Nevertheless, addressing these challenges in 
safety critical and distributed environments such as smart cities or satellites is the key to create more 
dependable and adaptable systems with efficient monitoring and early warning. 

2.3 Consortium’s Shared Vision for REWIRE 

Our vision for REWIRE is to enhance the security posture of next-generation smart connectivity “Systems-
of-Systems” with the endmost goal of enabling a holistic security management framework that can 
safeguard IoT environments during the entire lifecycle, i.e., from the Design to the Runtime phases, 
capitalizing on trust-aware defence mechanisms that exploit emerging technologies based on Formal 
verification, Theorem Proofs, Open Standard Instruction Set Architectures (ISA), Trusted Computing, 
Blockchain and Artificial Intelligence (AI). The goal is to build on the combination of these technologies, 
as enablers for the secure and formally verified design and configuration, secure operation, trust 
orchestration, and verifiable computing of safety critical IoT components.  
 
By coupling the zero-trust and security-by-design principles under the concept of “Never Trust, Always 
Verify”, REWIRE will ensure the security and trust of embedded and IoT devices. In this defensive 
strategy, we envision four main phases leveraging these aforementioned key technologies: (i) Formal 
verification of SW & HW co-design and cryptographic protocols (ii) FW & SW security updates and 
patching validation (iii) Runtime attestation for verification of IoT devices’ operational assurance using 
customizable lightweight TEEs, and (iv) Blockchain-assisted AI-based misbehaviour detection in a 
distributed fashion. In addition, REWIRE contributes to “Open-Source SW- and HW-Functional 
Description for Establishing Trust Anchors and Cyber-Security Governance in Systems-of-Systems” by 
exploiting metadata generated from application behavioural patterns and operations to determine 
appropriate security policies and properties to block potentially harmful instructions. 
 
REWIRE aims to provide formal verification in the unexplored areas of HW and SW co-design and 
cryptographic systems. Thus, the vision of REWIRE towards providing flexible HW architectures and 
converging security and performance goes beyond the state-of-the-art methods that focus only on HW 
verification. REWIRE, also apart from formally verifying HW and SW co-design, envisions formally 
verifying the adopted crypto-schemes and their actual implementation, compared to other solutions that 
verify only the scheme and not the implementation. Towards this direction, REWIRE’s goal is to provide 
a formally verified AES scheme (i.e., mode of operation) and implementation that is resistant to passive 
side-channel attacks and key leakage. 
 
REWIRE should also support security by design and trust governance of resource-constrained embedded 
and IoT devices using open standards. Thus, the emerging RISC-V and keystone technologies are 
considered a good fit as the common underlying HW (i.e., RISIC-V) to support and extend TEE (i.e., 
keystone)  functionalities. In parallel, we envision these technologies to be common to all the REWIRE 
use cases and also formally verified by the REWIRE mechanisms. 
 
REWIRE will investigate the use of runtime monitoring of trustworthiness and operational assurance of 
SoS. To do so, the design of new bread of remote attestation schemes (e.g., CIV with static properties 
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and key restriction usage policies, CFA, etc.) will be supported by extending the underlying TEEs 
functionalities. Non-intrusive tracing techniques will be used in order to extract measurements from the 
device (e.g., sequence of assembly commands, etc.). The tracing and the attestation mechanisms will be 
more efficient since they focus on assembly commands that stem from ISA - a reduced set of instructions 
- of the RISC-V. In tandem, the combination of the co-design formal verification and the remote attestation 
will provide more efficient attestation results, since only specific properties will need to be attested. 
Further, REWIRE envisions supporting automated FW and SW validation based on vulnerability analysis 
and binary instrumentation.  
  
Our aim is that REWIRE will provide a novel, practical, and scalable mechanism to support zero-touch 
onboarding aligned with the SSI concept toward creating a chain of trust. Thus, verifiable credentials 
containing the evidence of attestation results will be utilised to support DIDs. In parallel, blockchain 
technology will support ABAC and secure data sharing. Secure oracles will also ensure the data veracity 
of the stored information. Last but not least, REWIRE will provide misbehaviour detection and early 
warning in such distributed environments as the cornerstone of keeping secure and accessible safety-
critical infrastructures such as smart cities. Our vision is that REWIRE will positively affect the life of 
everyday people by enabling them to achieve greater levels of security and trust of their always-connected 
activities. 
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Chapter 3 

3. Methodology  
 
This chapter is focused on the followed methodology for designing the REWRIE MVP, starting with the 
requirements definition process, to their elicitation methodology and finally the extraction of technical and 
use case requirements. 

3.1 Methodology for MVP design 

The term Minimum Viable Product (MVP) is a version of the product that includes enough features to be 
usable by end users who can then provide feedback for future product development. In other words, it is 
a product with enough features to attract early-adopters to validate the product idea early in the product 
development cycle. The term MVP was introduced by Frank Robinson back in 2001 and then popularized 
by Steve Blank and Eric Ries. Using an MVP to test a business model is probably the most popular 
technique. 
  
REWIRE’s MVP needs are different compared to a company’s needs, since it is a Research and 
Innovation Actions (RIA) project aiming at reaching a Technology Readiness Level (TRL) equal to or 
higher than five. However, REWIRE’s consortium common vision, has already set the goals of the project 
and agreed on the core features of the REWIRE framework even from the proposal phase. MVP should 
be the simplest version of REWIRE framework and deliver the core value proposition to end users and 
solve their main problem. This common vision includes a gradual MVP approach for the smooth 
implementation of the framework and its adoption from the end users. Also, the contribution of the use 
case partners to the design of the REWIRE’s MVP towards a clear definition of the REWIRE’s scope and 
purpose is of paramount importance. A collaborative process among all the consortium was followed, 
from the insights of the use case partners to the analysis of the technical and academic partners towards 
answering core questions and describing the “as-is” and “to-be” scenarios for each use case. This process 
will assist in identifying existing gaps and potential refinements in the project’s vision. 

3.2 Requirements Definition Process 

REWIRE’s consortium worked together to refine the value propositions of the project and agreed on the 
main services and underlying technologies (see Section 2.2), after conducting State-of-the-Art (SotA) 
analysis for the main research pillars and innovations of the project (see Section 2.3). This SotA analysis 
is of paramount importance due to the research nature of the project, while it allowed the consortium to 
better understand the current needs and state of the market. All this aggregated information regarding the 
market analysis will be utilized in the context of WP7, which is focused on the dissemination, 
standardization, exploitation, and impact creation of the project in order to promote REWIRE’s outcomes 
and define a go-to-market strategy for both the REWIRE framework as a whole and its components 
individually.  
 
In parallel, the consortium identified the stakeholders, the specific actors involved in the envisioned use 
cases, and the corresponding goals, in order to gain a better understanding of the intended beneficiaries 
that the REWIRE framework be of interest. On top of that, it is necessary to collect and prioritize both 
functional and non-functional requirements. In the context of REWIRE, the requirements are gathered in 
two ways. The first part of the requirements gathered from the technical partners who are responsible for 
designing and implementing the REWIRE framework and resulted in the technical requirements. The 
second part of the requirements was collected from the use case partners who are responsible for the 
demonstrators and resulted in the use case requirements. After the finalization of the collection process, 
the responsible partner aggregated and prioritized the requirements with the consensus of the whole 
consortium. 
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An MVP is not just a product, but a process of getting through the Build-Test-Learn (BTL) feedback loop 
with the minimum amount of product iterations and experiments. The BTL cycle is integrated into the 
development of the core technical WPs (e.g., WP3, WP4 and WP5) that involves the creation of both 
initial and final version of the project modules and components as well as the REWIRE framework itself. 
BTL approach maximizes the value added to each module/component per se and to the entire REWIRE 
framework. In a nutshell, MVP is in line with the overall consortium vision and the adopted development 
process. The main objective of the MVP is to provide tangible value, validate methodological ideas and 
concepts, and serve as a baseline for design and implementation activities. The REWIRE MVP is of 
paramount importance towards directing and shaping the ongoing work through the project’s lifecycle. 
REWIRE’s MVP methodology is depicted in Figure 3.1. 
 

 

Figure 3.1: Methodology for definition of REWIRE MVP 

3.3 Requirements Elicitation Methodology 

The process of collecting requirements forms a substantial foundation for creating the REWIRE 
framework's business value. Requirements are a crucial component of the proposed REWIRE solution. 
Since these requirements form the basis for addressing identified needs, it is vital that they are specific, 
measurable, attainable, reasonable, and traceable. To collect them it is essential to actively involve all the 
relevant stakeholders and actively engage them in the process. Also, the elicitation of requirements is 
typically not a one-time process since the identification of gaps in the collected requirements may 
necessitate the elicitation of additional ones. The following subsections provide an overview of the 
employed methods within the REWIRE project for defining stakeholder requirements (e.g., technical and 
use case requirements). 
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3.4 Extracting Technical Requirements 

The Agile framework is an iterative methodology and it’s cantered around adaptive planning, self-
organization, and short delivery times. Such a methodology is flexible, fast, and aims for continuous 
improvements in quality. Thus, why has REWIRE employed such a methodology. Agile emphasizes clear 
communication and understanding between the business, technical, and scientific aspects of the project, 
while establishing transparent expectations at the project's commencement (e.g., REWIRE’s vision) and 
at each milestone, fostering collaboration and progress [REF-152]. 
 
In the context of REWIRE, system raw requirements were gathered with individual interviews conducted 
among the consortium technical partners. Raw requirements are the high-level requirements that have 
not undergone further analysis or been formally documented in a well-structured requirement notation 
[REF-152]. More specifically, REWIRE consortium run an iterative internal process for the requirement 
aggregation, using online tools for the interviews. This iterative process included brainstorming 
techniques, ad-hoc calls, and collaboration among the whole consortia. On top of that, the process results 
were mapped to the technical aspects of the framework and linked to the identified value propositions of 
REWIRE, leading to the identification and formulation of the necessary technical requirements. These are 
documented in Section 5. However, it is crucial to acknowledge that sometimes the requirements derived 
from the interview process were confusing and vague. This vagueness is caused by either stakeholder 
lacking technical expertise to understand and to provide accurate answers or by misinterpretation of the 
stakeholder needs by the system architects. Thus, the academic partners of REWIRE conducted a 
thorough analysis, starting from the state-of-the-art and literature review to the industry best practices. 
This analysis validated the requirements, identified potential applicable standards, and enhanced the 
quality of the collected raw requirements to bring value and meaning. 
 
The experience and expertise of stakeholders is of paramount importance for the elicitation of 
requirements. However, it is crucial to acknowledge that sometimes the requirements derived from the 
interview process were confusing and vague. This vagueness is caused by either stakeholder lacking 
technical expertise to understand and to provide accurate answers or by misinterpretation of the 
stakeholder needs by the system architects. Thus, the academic partners of REWIRE conducted a 
thorough analysis, starting from the state-of-the-art and literature review to the industry best practices. 
This analysis validated the requirements, identified potential applicable standards, and enhanced the 
quality of the collected raw requirements to bring value and meaning. The monitoring of the requirement 
collection and extraction process was the main focus of the WP2. The partners involved conducted 
several telcos both bilateral and as whole to discuss, provide their feedback and evaluate the collected 
requirements. 

3.5 Extracting Use Case Requirements 

As already mentioned, apart from the technical requirements gathered from the stakeholders, the use 
case partners provided a detailed description of the use case requirements (e.g., user stores along with 
the technical explanation) and the core functionalities they intend to use of the REWIRE framework. Their 
feedback was of paramount importance for more accurate requirements that are tailored to the project’s 
use cases also providing opportunities for further research. In this phase the use case partners 
collaborated closely with the research partners in order to refine the requirements and elaborate on the 
technical details derived from the narratives. More precisely, the refinement process included translation 
of the narratives into user stories, a high-level description of requirements. User stories provide concise 
units of ideas from the end-user perspective. Thus, there are also understandable from non-technical 
partners. Typically, the user stories are short (e.g., a single sentence) and self-explanatory with sufficient 
information for the requirement description.   
 
Initially, the REWIRE use case partners provided user stories that describe the "to-be" reference scenario 
in order to extract, later in time, the requirements from these user stories. A user story, a) emphasizes the 
perspective of a specific role that will use or be affected by the story, b) defines the requirement in a way 
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that is meaningful to the role, c) clarifies the reasoning behind it, d) facilitates the definition of high-level 
requirements without delving into details that are confusing at this early stage and e) considers the end-
user’s goals and added value. Several user story textual templates exist online, however, in the context 
of REWIRE the Connextra template is adopted [REF-154]. An example of the textual template is the 
following: As a < type of user >, I want to < some goal > so that < some reason > 
 

However, due to the nature of the agile project new or updated user stories may arise at any stage of 
development, ensuring a continual focus on important and meaningful to the end-users’ aspects, while 
potentially excluding features that may have less importance in terms of the added value. In REWIRE 
towards assuring that the user stories meeting is of high quality, a validation process is incorporated in 
the methodology in order the user story to be aligned with the INVEST characteristics [REF-154]. INVEST 
acronym stands for Independent, Negotiable, Valuable, Estimable, Small, and Testable to help us 
remember guidelines for writing effective user stories. This methodology is used to quickly review the 
quality of the user story presented to the team. If a user story fails to satisfy one of these criteria, the team 
may consider rephrasing it or rewriting it. The user stories described for each of the three REWIRE use 
cases are presented in Section 6 as part of the corresponding “to-be” reference scenarios. 
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Chapter 4 

4. REWIRE Conceptual Architecture and 
Functional Components 
 
This chapter is dedicated to the REWIRE conceptual architecture and its functional components. In a 
nutshell, the following sub-sections provide the conceptual architecture, the two phases of the 
architecture, i.e., the Design-time and the Runtime phases. In addition, this chapter focuses also on the 
REWIRE-enabled edge devices and services workflows in order to shed the light on how the REWIRE 
framework provides the holistic security management framework for safeguarding the edge devices. 

4.1 REWIRE Conceptual Architecture 

The REWIRE conceptual architecture is illustrated in Figure 4.1. The architecture is divided into two major 
parts. On the left-hand side the design-time phase is illustrated, following a top to bottom approach on the 
description of the workflows that take place in that part of the architecture. On the right-hand side the 
runtime phase of the architecture presented, including the REWIRE-enabled edge device and the cloud-
based backend infrastructure of the framework. 
 
The following subsection elaborates on the high-level actions that take place in the context of the two 
major phases of the architecture. Sections 4.3 and 4.4 elaborate on the components that belong to the 
design-time and runtime phases respectively, while Section 4.5 focuses on the REWIRE-enabled edge 
device. 

4.2 High-level Sequence of actions  

4.2.1. REWIRE Design-time Phase  

The design time refers to formal verification of the SW/HW co-design and the initial instantiation of the 
framework considering the initial phase of a deployment. In this phase, the security administrator, the use 
case providers and the OEM express the overarching requirements that need to hold on the system and 
are given as input to the formal verification processes of the SW/HW co-design, in order to analyse 
whether the system design can meet a desired level of security and trust by-design. Given the outcome 
of the formal verification, the security administrator will be in position to define additional security controls, 
as part of a Security Policy Management process, in order to support the formally verified system with 
additional security measures in order to further minimise the attack surface of the designed system. The 
design-time phase is illustrated at the left-hand side of Figure 4.1 and can be divided logically in the 
following steps. 
 

4.2.1.1. Step 0: Definition of Requirements 

The Security administrator defines the set of requirements which usually fall under different categories. In 
REWIRE, and until the moment of writing this deliverable, the technical members have identified three 
major categories of requirements, referred to them as the “Overarching Requirements” of the system 
design that need to be considered. The overarching requirements include, but are not limited to, the 
requirements for the Security Models, the Cryptosystems and the Binary Instrumentation. The Security 
Models refer to any security-related mechanism that a system needs to integrate in order to meet its 
operational objectives in a secure and reliable manner. In the context of REWIRE, as Security models we 
define the mechanisms of the Cryptographic Key Management, the Zero-trust Onboarding, the Attestation 
Schemes, the Device State Management (function migration/isolation), etc. Each of the aforementioned



 
 

 
 

Figure 4.1: REWIRE Conceptual Architecture 
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mechanisms may entail to a number of mechanism-specific requirements that the system needs to take 
into consideration during its design phase. The Cryptosystem requirements refer to those that instruct the 
way that the crypto schemes will be designed and be included in the system design. For REWIRE, we 
particularly focus on side-channel resistant modes of operation in order to safeguard the SW update 
process from side-channel attacks. That is why in the architecture of Figure 4.1 the Provable secure crypto 
for secure communication is highlighted as a distinct component and it is not presented as part of the rest 
of the security models of REWIRE. Last, but not least, the Binary Instrumentation requirements are used 
in order to express the need for the addition of SW instrumentation hooks which will not break the secure 
and trustful design of the system. It has to be noted, that these categories are just an indicative subset or 
requirements which are applicable to the REWIRE project. By generalising this concept, the REWIRE 
design-time phase suggest that any requirement that needs to be met by a system design can be given 
as input during this phase so that to be considered by the formal verification process. A requirements 
expression language will be used and will be defined later in the project in order to be able to express the 
set of requirements and be given as input to the AADL-based System Modelling in order to be mechanised 
and feed the formal verification processes.  
 

4.2.1.2. Step 1: AADL-based System Modelling 

System modelling is a proprietary step before the actual formal verification process.  Thus, a model-based 
design framework for Validation and Verification of a system’s architecture is needed so that to model 
how the requirements map to specific system artefacts and verifying functional and requirements-driven 
correctness.  
 
To do so, REWIRE uses AADL-based System Modelling, for both software and hardware, as the Model-
Based Engineering (MBE) approach that will be used for specifying both software and hardware 
configurations, and, thus, building a representation of the system to be validated. This is what Figure 4.1 
aims to represent in the AADL-based System Modelling component. In this component an abstract 
illustration of the system is represented, comprised from the SW and HW elements that synthesise its 
SW/HW stack. AADL is a standardized architecture description language, able to model hierarchical 
structure and connections among software and hardware components. In this step of the design-time 
phase, AADL is intended to be used in order to model a repository of proof artifacts for the various 
(security) properties related to the project use cases. AADL is used to define component properties. 
Requirements can be also defined as properties which can then be associated with the various system 
components in order to map requirements to the system architecture. 
This mechanised representation of the system and the mapping of its internal components and 
requirements are given as input in the formal verification process (and the respective tools) in order to 
check the satisfiability of security requirements.  
 
 

4.2.1.3. Step 2: Formal Verification 

Once the AADL model has been generated, the REWIRE design-time phase proceeds to the actual formal 
verification process. REWIRE will use and combine several tools and methods in order to perform the 
formal verification. At the moment of writing this deliverable, Model checking, Theorem Proving and 
Universal composability have been chosen as the approaches that can cover the spectrum of formal 
verification activities of REWIRE. Each of the aforementioned methods focuses on a specific aspect of 
the formal verification. For instance, Universal Composability will be used for the validation of 
cryptographic protocols used in REWIRE for authentication and authorisation, Theorem proving will be 
used for the validation of the implementation correctness of the side-channel resistant mode of operation 
of the REWIRE authenticated encryption scheme, while Model Checking will be used for validating the 
correctness of the REWIRE attestation schemes and the monitoring hooks. It has to be stated that this 
approach may change as the project progresses. The final association between the methods and the 
artifacts to be verified will be documented in D3.1, as the aim of this section is just to elaborate on the 
architectural aspects of the formal verification layer of the design-time phase.  
 
Special mention is needed to highlight also the modelling of the monitoring hooks. Security hooks will be 
used in REWIRE for instrumenting critical security processed of a FW/SW in order to be able to monitor 
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in an efficient manner its execution during runtime (See Section 4.4.6). However, the instrumentation of 
a binary is not a straightforward process, while the addition of monitoring hooks may even break the 
security model of a system. Thus, REWIRE will carefully treat the process of adding monitoring hooks, by 
considering this process as part of the overall formal verification process. The security hooks modelling 
is actually an iterative process which is being executed until the inclusion of the necessary hook is included 
in the FW/SW and the formal verification process results to a security model that holds the necessary 
security and trust properties. At the moment of writing this deliverable, finite-state machines is considered 
the most prominent technique that can be used for the modelling of the monitoring hooks. 
 
The above methods generated as outputs a set of compositional verification results, Proofs on the 
satisfiability of security and trust requirements and evidence on the correctness of the attested schemes. 
Resolute is used to collect information about the requirement satisfaction. If all the required artifacts are 
present, the tool outputs that the top-level system is secure, confirming that the security goals are 
supported by evidence. Otherwise, it pinpoints to the particular component from which the relevant proof 
artefacts are missing and need to be provided. 
 
 

4.2.1.4. Step 3: Definition of security control and Security policy 

management and enforcement 

 
The REWIRE architecture will focus on mechanizing the formal verification outputs into enforceable 
security policies that will govern the device operation throughout the executed use-case scenarios. This 
will be achieved as part of the layer for the definition of security controls. In this layer, a semi-automated 
activity is followed. The security administrator interprets the outcome of the formal verification process so 
that to identify the part of the system which has not been validated, i.e., the part for which no security 
and/or trust guarantees exist for the security and trustworthiness of the system as a outcome of the formal 
verification. This means that for the rest of the system, for which it not possible to derive a formal 
verification of its correctness or trustful operation, the security administrator needs to define a set of 
mitigation actions or security policies which can safeguard the operation of the system during runtime. 
REWIRE will be focusing on the deployment of attestation policies that could be used in order to detect 
potential compromised components, binaries or deviations from the legitimate behaviour profile of critical 
applications.  
 
Following this approach, the design-time phase of REWIRE, will result to a provably secure-by-design 
SW/HW co-design, covering the most security- and safety-critical operations of the system, as instructed 
by the defined overarching requirements, while the rest of the system will be protected through the 
definition of security policies defined by the system administrator.  
 
The policies which are defined at the end of this process will take the form of enforceable policies that 
can be loaded on the devices and will regulate its operational behaviour during runtime. For this step, 
REWIRE will investigate policy expression languages which can support the project’s objective, while an 
API will be designed in order to enable the actual enforcement of policies (when possible) on the devices 
through the policy orchestrator component.  
 
Of course, the outcome of this process of the design-time phase is not only the dynamic enforcement of 
policies, but its is the final step of the formal verification actions for delivering a secure-by-design system. 
This means that the output of the whole process will be the definition of the assurance claims about 
different parts of the architecture, the definition of the RISC-V ISA for HW-implemented crypto primitives, 
the isolation properties of critical system applications, the security and key management processes. All 
the aforementioned aspects should be taken into account for the system design. 
 
 

4.2.1.5. Step 4: Definition of the MUD profiles 

The last step of the design-time phase is the definition of the Manufacturer Usage Description, or MUD, 
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profile of the system. The MUD profile for each device is ostensibly a set of rules and expected behaviours 
against which we can compare its current behaviour and identify any deviation. MUD (RFC 8520) is a 
standard for enabling IoT devices to signal to the network what access and protection they need, now 
ratified by the Internet Engineering Task Force (IETF). The purpose of which – as the name suggests – 
is to provide facility and standardisation for Internet of Things (IoT) manufacturers to declare the various 
functionalities of their respective devices.  
 
Within the MUD standard, manufacturers dictate explicitly the precise, and only, behaviours permissible 
for their devices as dictated by the data-types and methods that are necessary for the IoT device to 
function as intended. Hence, the outcomes of the REWIRE design-time phase, through the formal 
verification of the SW/HW codesign and the definition of the additional security policies on behalf of the 
administrator, can be used in order to define the set of rules that represent the expected operational 
behaviour of a device. During the runtime operation of the system, and more specifically, as part of the 
zero-trust onboarding process, the security administrator of an operational environment can acquire the 
MUD profile, as this has been augmented by the REWIRE design-time phase.  
 
 

4.2.2. REWIRE Runtime Phase  

During runtime, the REWIRE framework offers a wide spectrum of functionalities in order to support the 
life cycle of the IoT deployments, starting from the secure onboarding and bootstrapping to operation, 
update, and decommissioning. For all the aforementioned phase, REWIRE offers functionalities that 
capitalise both on services running at the cloud-based backend of the framework, as well as on agents 
running on the end-devices. Given this, the workflows and execution steps of the runtime phase are not 
sequential, as was the case for the design-time phase which consists of 5 distinct steps, they can be seen 
as standalone functionalities which, to a certain level, may be depended among each other. Hence, we 
identify bellow the various workflows of the runtime phase and we offer a high-level description of the 
individual steps that are executed in each workflow.  
 
 

4.2.2.1. Zero-touch onboarding 

The secure onboarding of devices into the REWIRE network will cover the trust-aware enrolment to 
ensure that only devices which are in a correct state can join the network. The ZTO architecture is 
highlighted in Figure 4.1 on the right-hand side. The ZTO is the first action that needs to be performed in 
order to enrol first the device into the network and then, it can participate to the rest of the services which 
are described below.  
 
REWIRE devices are enacting the ZTO through the attestation agent component. The latter is aware of 
the MUD URL. The device makes a contact to the Privacy CA first, which is responsible for activating the 
keys that will be used on the device for the secure communication. Once the communication keys are 
activated, ZTO request takes place, and the Privacy CA actually, based on the MUD URL, sends the 
request to the AAA Server. The AAA Server, which is the entity that manages the identity services of the 
manufacturer (in the manufacturing domain), passes this URL to the MUD Profile Server, which controls 
the verification process and the validation of the MUD profile. The MUD Profile server, which is aware of 
the MUD profiles of the devices, as those have been created by the manufacturer during the design-time 
phase of REWIRE, verifies the MUD file by asserting that the MUD file was produced by the device 
manufacturer and that it corresponds to the device that sent it to the MUD Profile server. 
 
Given the MUD File, the MUD Profile server will translate it to a set of context-specific policies which are 
passed back to the Privacy CA. The latter then enforces the policies to the REWIRE blockchain 
infrastructure for that to enable the trust-aware continuous authorisation and authentication processes of 
REWIRE and the attribute assess control mechanisms. Once this process is completed, the device has 
enabled all the necessary credentials and the REWIRE infrastructure is aware of the policies that portray 
the operational behaviour of the device. More specifically, the ZTO process concludes by creating the 
Attestation Key on the device that will allow to perform the necessary attestation actions to prove its 
correct state when onboarding to the application domain. In fact, this is the next step, where the device 
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communicates with the domain manager, it provides its credentials in order to acquire the symmetric key 
that will allow the device to communicate with the rest of the devices in the context of the REWIRE 
architecture. More details for the ZTO are given in Section 4.4.7. 
 

4.2.2.2. Secure Firmware and Software validation and update 

One of the core functionalities offered by REWIRE is the secure FW/FW update process. In today’s IoT 
deployments there is an urgent need for scalable and secure FW/SW update processes for ensuring that 
the IoT deployments are always up to date, they operate in a legitimate way, and that the vulnerability 
patching may occur over-the-air so that to ensure the fast and at-scale deployment of patches and new 
FW/SW versions. Towards this goal, REWIRE creates a unique workflow consisting of various stand-
alone technical artifacts which, when combined, form a vital service for guaranteeing the security and 
continuity of the IoT deployments.  
More specifically, the SW/FW validation component, the SW/FW Distribution service, the Side-channel 
resistant mode of operation for authenticated encryption, and the Secure oracles operate in tandem for 
the provision of the Secure FW/SW validation and update service of REWIRE. As illustrated in Figure 4.1, 
the security administrator, decides to initiate the SW/FW update process. This process may be triggered 
by the administrator after analysing the security posture of the infrastructure, based on the events 
collected through the various mechanisms of the REWIRE and the risks identified by the risk assessment 
process. REWIRE offers a complete tool for validating the secure implementation of a FW/SW, analysing 
its source code to detect potential vulnerabilities through static and dynamic analysis methods (see 
Section 4.4.6). In addition, specifically for some limited number of safety-critical operations, the REWIRE 
SW/FW validation Component is able to instrument the FW/SW for adding monitoring execution hooks 
which will enable the efficient introspection of the operational profile of the process while being executed 
on the device. Given this, efficient attestation of the applications behavioural profile can be achieved 
during runtime.  
After ensuring that a FW/SW is free of known vulnerabilities, the SW/FW distribution service undertakes 
it deployment. The latter is not a service offered by REWIRE, but we are going to take advantage of the 
existing updating services that the use case partners have already in their environments. REWIRE 
focuses on the secure SW/FW deployment. That is why, the SC-Resistant AE of REWIRE is used in order 
to encrypt the update and ensure it integrity and authenticity. Notably, these properties are achieved, 
while the specially designed mode of operation of the authenticated encryption scheme protects again 
side-channels, making sure that even the most sophisticated attacker that can physically monitor the 
process, cannot leak the symmetric key used for the encryption.  
After the encryption, the FW/SW distribution takes place. Depending on the requirements of the 
operational environment, this can be performed in an “1-to-1” manner, suggesting that the SW/FW 
distribution service enforces the update directly to the end-device, or in an “1-to-many” approach, where 
the secure oracles undertake the distribution of the update to multiple devices which may be 
geographically distributed (e.g., in smart cities.) Regardless of the way that the update is distributed, the 
end-devices have the necessary cryptographic capabilities in order to decrypt the update, validate its 
integrity and authenticity and initiate securely the update instalment process, by taking advantage of the 
isolation mechanisms offered by the REWIRE TEE. In this way, REWIRE ensured the secure and FW/SW 
update process, from the beginning of process on behalf of the administrator, until the moment of the 
actual deployment.   
 
 

4.2.2.3. AI-based threat intelligence for the detection of anomalous events 

REWIRE offers an AI-based service for the detection of abnormal incidents based on monitoring data that 
reflect the operational behaviour of the end-devices. The service requires the synergy of several technical 
components of the architecture, as those are illustrated in Figure 4.1. More specifically, the AI-based 
threat intelligence component is the heart of this service. This is where the actual AI model is trained and 
instantiated. This component works in synergy with the off-chain-data storage for retrieving data for 
training purposes and the Secure Oracles and the blockchain infrastructure in order to acquire data during 
runtime. These data are being collected by special agents installed on the end-devices, collecting 
telemetry and system data that can reflect the security state of the device. It has to be noted, that the data 
collection agents are not defined in the context of REWIRE. We capitalise on existing solutions and on 
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tools that the use case partners of REWIRE have already in their environments.  
 
As illustrated in Figure 4.1, the App & System/Network data captured on the devices is sent to the oracles, 
where a first step of data filtering and normalisation is applied before those are sent back to the Off-chain 
Data Storage to be saved and indexed, or, during the inference model of the AI model, as sent to the AI-
based Threat Intelligence engine to be analysed. In case the engine detects any deviation from the 
legitimate behavioural profile of a device/system/critical function, a risk indicator is generated and is 
forwarded to the Risk Assessment engine in order to visualise the detected events, increase the 
awareness of the security administrator and identify potential risks. The detection of anomalous events 
may imply the need for the deployment of new security and operational policies or the need to the 
deployment of the FW/SW update/patch. 
 
 

4.2.2.4. System introspection and operational assurance 

One of the core offerings of REWIRE is a new breed of attestation mechanisms that will guarantee the 
operational assurance of the end-devices and their critical operations. In fact, the attestation mechanisms 
are a core defence measure to protect the IoT deployments in REWIRE, as it enables the detection of 
compromised devices and misbehaving processes. More specifically, as aforementioned in secure 
FW/SW validation service, one of the core enablers for the efficient attestation in REWIRE is the addition 
of the monitoring hooks. The latter enable the REWIRE tracer to efficiently monitor the execution 
behaviour of a critical application and collect the execution evidence in a targeted manner, as the tracer 
collects only those traces that the hooks have been designed to intercept. In this way, the extracted traces 
are far less, and the processing and decoding process requires less time. As highlighted in Figure 4.1, 
the REWIRE Tracer, the Attestation Agent and the ZTO agent operate synergistically. The attestation 
agent is responsible for initiating an attestation process and communicates with the integrity verification 
enclave to perform the system measurement in a secure and isolated manner in the trusted world. The 
enclave communicates with the Tracer in order to collect the traces from the untrusted world and passes 
this information back to the enclave (trusted world) in order to perform the final measurement and calculate 
the hash. REWIRE will use a local attestation protocol with key restriction usage policy. This means that 
only if the system is in a correct state, the underline RoT of the device will allow the system to use the 
cryptographic key in order to sign the measurement. More details on the attestation protocol are given in 
Section 4.5.5.  
 
We need to highlight the role of attestation in the trust-aware continuous authentication and authorisation 
processes of REWIRE and in the ZTO process. As aforementioned, the authentication and the onboarding 
of devices requires evidence on the correct state of the device. That is, the attestation outcome is treated 
as a security claim which is transformed into a verifiable presentation using the Verifiable Credentials 
Management enclave in the TEE. The security claims, which prove whether a device is in a correct state 
or not, are used during the ZTO or any interaction with the REWIRE blockchain and are used as enablers 
for Data source integrity verification and as attributes for attribute-based access control. This REWIRE 
functionality implies that only trusted entities will take part in the REWIRE environment.  
 
In parallel with the above-mentioned operations, the attestation evidence is collected by the attestation 
agent and is sent, through the Secure oracles, back to the REWIRE back-end infrastructure for further 
analysis and for keeping track of the security posture of the devices. More specifically, the attestation 
outcomes and traces are stored and indexed on the off-chain data storage so that to be used as evidence 
for certification and auditing purposes. In addition, the attestation evidence is sent back to the SW/FW 
validation component to perform a hook-based event analysis in order to analyse further the event and 
trigger an alert to the risk assessment component in order to increase the administrator’s awareness for 
the detection of a compromised device.  
 
 

4.2.2.5. Device state management 

Another novel offering of REWIRE is a device state management service which aims to increase the 
resilience of critical services and contribute to the continuity of business services. More specifically, even 
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if we try to enhance the security of systems with innovative security solutions like the formal verification 
to achieve assurance by-design, and a wide range of techniques to safeguard systems during runtime 
(e.g., AI-based threat intelligence, Attestation, etc.), it is inevitable for devices to get compromised or to 
present malefactions due to system faults or misconfigurations. That is, REWIRE introduces a device 
state management approach, based on the use of TEE, in order to keep a critical service operational.  
Two functionalities are offered to support this vision, namely the Enclave Migration and State fallback. 
The former suggests that whenever a critical service is detected as compromised (e.g. based on an 
attestation outcome) the state of the service (i.e. cryptographic keys and/or operational data) will be 
migrated to a new enclave in order to continue or re-initiate the service execution. The state migration 
between enclaves of the TEE is an innovative concept that will be documented in the context of the actions 
of WP4. More details can be found in Section 4.5.3. The migration process and its details (e.g. which 
process will be migrated from enclave A to B and under which circumstances) are instructed to the 
systems through operational policies which are being enforced on the device from the security 
administrator through the policy orchestrator of the REWIRE facility layer.   
A similar approach is followed in the State Rollback case, where the system is reverted to a previous, but 
operational, state in case a system failure or compromise is detected. This operation is vital, especially 
for cases like the smart satellites, where physical intervention is not possible and a system failure could 
completely disrupt the service and/or the infrastructure.  The state rollback functionality is regulated by 
the operational policies defined by the security administrator while the previous legitimate states of the 
system are stored on the State Dynamic Map component of the device. Both functionalities will be based 
on the newly designed feature on the REWIRE customisable TEE.   
 
 

4.2.2.6. Risk Assessment and user awareness 

This service will offer an assessment tool, which will be based on UBITECH’s OLISTIC Cybersecurity & 
Privacy Risk Assessment engine and will focus both on the Design and Runtime phases of the 
deployments’ lifecycle. Especially for the latter phase, it will provide near real-time evaluation of identified 
cybersecurity risks. The tool will be empowered with a qualitative and quantitative risk estimation method 
being in-line with the threat landscape of the IoT deployments and the REWIRE architecture. The method 
and tool will consider the dependencies that may exist in the IoT deployments to identify possible 
vulnerability paths that can result to propagated risks. The tool will be fed with information/evidence 
stemming from the monitored devices as a result of the security validations performed by the security 
mechanisms of REWIRE, i.e., Runtime Attestation and the AI-based misbehaviour detection. The end-
goal is to increase cybersecurity awareness of the responsible operator so that to take informed decisions 
on updating and patching critical SW and FW resources, and identify risks from deviations of the behaviour 
profile of devices. The tool will provide a complete dashboard where the administrator will be in position 
to form a digital representation of the monitored environment and will be supported by visualisation tools 
for representing the identified risks.  
 
 

4.2.2.7. Secure, transparent and accountable data sharing & access control 

This service refers to the functionalities offered based on the use of the REWIRE blockchain infrastructure 
and the secure oracles. In fact, the BC infrastructure is the most critical component of the REWIRE runtime 
architecture as it facilitates the vast majority of the data sharing operations that have been described in 
the context of the other services/functionalities. As can be seen in Figure 4.1, all the surrounding 
components, either those belonging to the REWIRE framework or they constitute external entities, they 
are interfacing with the Secure Oracles in order to make transactions with the blockchain.  Secure oracles 
undertake critical operations for enabling data sharing among the REWIRE framework, while in parallel 
are in position to apply data indexing, filtering, and preprocessing, depending on the type of data being 
collected. The logic of applying data processing and orchestrating the whole data sharing process is 
regulated through the use of smart contracts, while the oracles make use of a TEE in order to isolate 
critical data processing operations.  
 
As illustrated in Figure 4.1, the blockchain infrastructure is used for the sharing and exchanging: 

• App & system/network data to be fed to the AI-based threat intelligence component and to be 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 38 of 177 REWIRE D2.1 

  

      

stored and indexed by the off-chain data storage. 

• Operational policies, which are being pushed from the administrator and need to be enforced on 
the devices so that to regulate critical processes like the attestation, the device state management, 
etc. 

• Encrypted FW/SW updates which are being forwarded to the devices, through the oracles, in the 
context of the SW/FW update process of REWIRE. 

• Attestation Results and Evidence which are the outcomes of the introspection and attestation 
processes. These data are being forwarded to the Hook-based event analysis and to the off-chain 
data storage. These data can be shared also with external entities who may wish to access the 
data in order to check the security posture of the devices for certification purposes. 

• VPs for Data source integrity verification and ABAC. As aforementioned, VPs are generated 
by the Verifiable Credentials management enclave as part of the ZTO and whenever and 
attestation process is performed. The VPs contain security claims which are used to exhibit that a 
device is in a secure state, and act as enablers for applying attribute-based access control in the 
contest of the trust-aware continuous authentication and authorisation services of REWIRE.  

• Any data, as the blockchain infrastructure may be used for sharing and persisting any kind of data 
that the REWIRE framework or the IoT deployment might need. 

 
We need to highlight that one of the main purposes of enabling the blockchain-based data sharing in 
REWIRE is the ability to perform data transactions in a secure, transparent and accountable manner. The 
secure oracles allow data transactions at scale, while the use of a TEE on the oracles can provide 
guarantees on the security, data provenance and data veracity. Last but not least, the use of the 
blockchain infrastructure enables decentralized data integrity and secure access control using attribute-
based access control (ABAC), utilizing the VPs and the security claims as the enabling attributes.  
 

4.3 Design Phase Architecture and Functional Components 

 
While the previous section was focused on the description of the high-level sequence of actions of the 
design-time and runtime phase of REWIRE, the following sections focus on functional components per 
se, elaborating on the details of their design and their functional objectives. 
 
 

4.3.1.  Collection and Mechanisation of Requirements 

4.3.1.1. Description and functional objective  

Requirements definition, elicitation, and formalization are considered key to automate and apply 
Validation and Verification (V&V) approaches in order to prove that the developed system will meet its 
specifications. Formal methods practices can sometimes be challenging to adopt in industrial 
environments especially when multi-disciplinary engineers contribute to the end-requirements documents. 
On the other hand, the need for formalization and verification in the design of secure systems is now more 
evident than ever. To the end of easing integration of formal methods in REWIRE, we intend to use a 
model-based system engineering (MBSE) approach documenting the requirements using natural 
language, following though a series of patterns order to aid in the formalization process of the 
requirements. The latter will be used by the REWIRE V&V framework to verify the requirement against 
formal specification model (of SW or HW modules) for which certain security, safety, or correctness 
properties need to hold. The developed approach is an end-to-end solution, starting with natural language 
requirements as input and going all the way down to generated Temporal specifications (e.g., in model 
checking) or theorems (in theorem proving). Additional requirements may be defined as contracts within 
the OSATE framework attempting their verification using compositional verification. We employ an 
ontology-based reasoning approach using the RESOLUTE tool to link evidence of verification tools with 
the associated requirements using well-formed, sound assurance cases based on the SACM standard. 
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Such an approach will drastically reduce the required requirement traceability workload for both legacy 
and new requirements during the system development cycle.   
 

4.3.1.2. Component workflows  

In a typical workflow, as recommended by industrial standards, requirements are developed in a 
hierarchical fashion, based on the level of abstraction. First, intended functionalities of the system under 
account are described, e.g., in structured natural language (system level). Second, subsystems are 
identified within the overall system architecture, and software requirements are distinguished from 
hardware requirements (higher level). A third refinement step leads to the development of lower-level 
requirements, from which source code, on one side, and hardware components, on the other side, are 
obtained (implementation). 
 

 
Figure 4.2: Collection and mechanisation of requirements sequence diagram 

At the different levels, requirements can be expressed by means of different languages. The adoption of 
a formal notation, and possibly the use of executable models, according to the MBSE paradigm, provide 
numerous benefits for what concerns both validation and verification of requirements. Formalization 
removes ambiguity and helps determining whether a set of requirements is both necessary and sufficient 
to represent the intended functionalities; consistency, as well as correct derivation of a lower level of 
requirements from a higher level, can be (semi)automatically verified if the requirements are for example 
encoded in a fragment of first order logic, via tools such as model checkers and theorem provers. 
Complementary to formal verification, the use of executable models allows the realization of (possibly 
automated) testing strategies. 
 
 

4.3.2.  Provable secure crypto 

4.3.2.1. Description and functional objective  

The objective of REWIRE is to provide a provably secure cryptographic scheme in order to safeguard the 
critical operation of the secure SW/FW update. That is why, this component is highlighted as a stand-
alone component in the design-time phase of REWIRE. The main requirement is to ensure that the update 
is transferred in a secure manner, even in the presence of side-channel attacks. More precisely, the 
SW/FW update transmission should provide authenticity (i.e., no attacker – even using side-channel 
attacks – should be able to modify the payload without being detected) and, in some use cases, 
confidentiality (i.e., no attacker should be able to read the payload’s content, although, for efficiency 
purpose, side-channel attacks are not taken into account here). Also, the crypto solution should be easily 
deployable to a large class of IoT platforms and, therefore, should not depend on the availability of some 
carefully engineered component or some special design expertise. The side-channel security should be 
an artifact of the design and should depend on minimal and easily testable physical assumptions. 
 

4.3.2.2. Component workflows  

The security component to be developed in REWIRE is an Authenticated Encryption (AE) algorithm. It 
achieves security against passive side-channel attacks by construction, based on certain physical 
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assumptions. The main physical assumption in this case is access to a fully parallel hardware AES core 
(Crypto Coprocessor in the Figure 4.1), and an exclusive long-term secret key for the AES. The AE mode 
ensures that the core is accessed at most two times with a fixed key, and the physical assumption is that 
the hardware AES does not reveal the key in two measurements. The long-term secret should only be 
accessed by the hardware AES core in order to prevent any unwanted leakage. This key has to be pre-
established and can be put inside the device during manufacturing at the factory level. Other than this 
AES core (with this long-term, pre-established secret), the rest of the operations in the AE can have 
unbounded leakage while still ensuring integrity. 
 
As aforementioned, the AE scheme will be used to support the secure FW/SW update operations of 
REWIRE. Two different modes of operation of the update process will be supported:  
 
1. One-to-one SW Update Case:  

Authenticated Encryption by SW/FW distribution service: 

The production of the secure SW/FW update is performed by the SW/FW update provider following the 
mode of operation specification. Depending on the physical security level of the environment in which the 
software update is encrypted, an AES coprocessor can be used (as depicted on the right of Figure 4.3) 
or a relaxation can be to use a software AES if side-channel attacks are not a threat in the SW/FW 
generation environment. The execution of the algorithm will yield to a pair (i.e., tag, ciphertext) that will 
only be valid if decrypted as described in the next section. 
 
Key Management:  

The SW/FW update key is assumed to be pre-established and not to be touched by the key management 
firmware or not to be transmitted online. To achieve this, a simple and secure enrolment protocol can be 
devised. After the device is manufactured, the key can be enrolled in a small non-volatile memory only 
read-accessible by the AES core through the AEAD firmware. The key enrolling that we denote as “key 
personalization” can be done with simple methods such as using a scratch card and putting the 16-byte 
string on it in the device. This must happen in a trusted environment. Below we point out the three main 
advantages of this approach:  

a) The key is directly handled by the AEAD firmware which is already a part of a mathematically proven 
algorithm and formally checked implementation. 

b) The enrolment phase happens only once in a trusted facility and a side-channel attack during this 
one-time operation (that too in a trusted environment) is hard.     

c) The software provider is the only one to gain access to the SW/FW update key, he can set up both 
the server and the edge device in a manner that no trusted party is required. 

 
Decryption on receiver’s side: 

As shown in Figure 4.3 below, the encrypted SW/FW update arrives through some channel and is 
forwarded to the AE engine. The AE performs several encryption (and possibly one decryption) queries 
to the AES core, among which only two queries are with the long-term secret. The rest of the queries are 
ephemeral secrets. In simple words, the AE first generates a session key and then encrypts/decrypts the 
message blocks by generating more ephemeral keys from this session key. If the verification of the update 
is unsuccessful, the AE engine returns a decryption failure message. Otherwise, it returns the decrypted 
update. Upon receiving the failure/success message the device sends an acknowledge (or failure) 
message back. This message is also encrypted and authenticated, with the same algorithm and key. The 
encryption process is exactly the same as that performed by the SW/FW distribution service, as described 
above. The encryption side is exactly same as the decryption side except that it outputs a ciphertext and 
a tag instead of success/failure messages.  
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Figure 4.3: SW/FW update using AE (one-to-one) 

 
2. One-to-many SW Update Use-Case: 

This is a special use-case where the SW/FW is sent to many clients simultaneously, using asymmetric 
cryptography. Here the SW/FW distribution service possesses a public/private key pair. The update is 
signed by the private key. We assume that there exists a standard infrastructure to distribute the public 
key. The SW/FW distribution service signs the update with its private key, and all client devices can then 
verify the signature of the update using the corresponding public key. This operation does not require 
need any side-channel security to ensure integrity and authentication (as no secret is involved on the 
client side, and the server side, operating in a non-hostile environment, cannot be subject to side-channel 
attacks). However, in order to prevent, or at least detect, DoS attacks, it is still necessary for the receiver 
to send an acknowledge (or failure) message back. This is performed using the symmetric AE, as 
described in the one-to-one process detailed above. 
 

 
Figure 4.4: SW/FW update using AE (one-to-many) 
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4.3.3.  SW and HW co-design Formal Verification and tools 

4.3.3.1. Description and functional objective  

SW and HW co-design of a system using integrated formal verification tools is considered an advanced 
engineering process of using the right tools and methodologies for generating evidence that the SW or 
HW artefacts meet its specifications. In this section the description of the model-based design framework 
for Validation and Verification (V&V) of SW or HW artefacts will be described including methods and 
modelling approaches for a) mapping requirements to artefacts, b) verifying functional and requirements-
driven correctness and c) validating security requirements through evidence wrapped in assurance cases. 
Model-based Engineering (MBE) has emerged as a key set of methodologies to design complex systems. 
One widely adopted MBE technology is the AADL [REF-01]. Initially developed for avionics applications, 
AADL has since been used to design a wide range of embedded real-time system architectures, largely 
due to its language constructs for specifying both software and hardware configurations. Moreover, AADL 
has a reference implementation called OSATE [REF-02], which is an open-source modelling environment 
that comes with a few built-in analysis tools such as flow control and schedulability. Because OSATE is 
based on the Eclipse framework, creating new analysis plugins is relatively straightforward. AADL 
includes an annex mechanism for extending the base grammar, thereby supporting new language 
features and analyses. One such annex is the AGREE [REF-03], which is a compositional assume-
guarantee-style formal analysis tool. AGREE attempts to prove properties about one layer of the 
architecture using properties allocated to subcomponents. The composition is performed in terms of 
formal assume-guarantee contracts that are provided for each component. Assumptions describe the 
expectations the component has on its inputs and the environment, while guarantees describe bounds on 
the component’s behaviour. The model checker then attempts to find any model execution traces that 
violate these contracts using one of several SMT solvers. If the model checker covers all reachable states 
in the model without finding a violation, the model is proven to satisfy its contracts. 
 
AADL is a standardized architecture description language, able to model hierarchical structure and 
connections among software and hardware components. The language was designed with extensibility 
in mind, which can be done in two ways: (a) custom component properties and data types, as well as (b) 
In the context of REWIRE, AADL is intended to be used in order to model a repository of proof artifacts 
for the various (security) properties related to the project use cases. In particular, the Resolute annex will 
be used to collect the available evidence from the various model checking and theorem proving tools and 
build an assurance case stating that the top-level system operates securely. 
 
Representing requirements in AADL can be done using custom data types and component properties. In 
particular, a record type can be used to collect relevant information about a specific requirement (such as 
textual description, ID, path to the disk where proof artifact can be found, etc.), and then custom properties 
of this requirement data type can be associated with the various system components in order to map 
requirements to the system architecture. 
 
The Resolute annex can be used to collect information about requirement satisfaction in an AADL model, 
by checking the filesystem for existence of the relevant proof artefacts. If all required artifacts are present, 
the tool outputs that the top-level system is secure. Otherwise, it pinpoints to the particular component 
from which the relevant proof artefacts are missing and need to be provided. 
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Figure 4.5: High level overview of validation and verification REWIRE framework 

 
Figure 4.5 highlights the baseline V&V workflow that we envision as part of REWIRE. Starting from high 
level system requirements mapped in AADL models (architecture) and tracing the requirements within 
evidence generated by specialized formal verification tools (Model checkers, Theorem provers). Evidence 
will be linked to each individual requirement through the RESOLUTE tool validating (or not) each 
assurance case that described the requirement. 
 
The framework is intended to be used according to the following workflow: 

1. Security requirements are specified in order to mechanise them in the framework. 

2. System architecture is modelled in AADL by defining key components. 

3. Formal analysis of model is performed using AGREE to verify the design satisfies security 
properties captured in functional requirements. 

4. Hardware and Software components are implemented manually, or through verified synthesis and 
linked in the AADL components. 

5. Where possible, formal analysis is performed on component implementations – this could be done 
by a variety of methods (e.g., model checking and theorem proving). Requirements are being 
modelled as Temporal specification or theorems within each approach. 

6. Component implementations are integrated into a system build. 

7. System V&V is performed – checking the link between the generated evidence and the 
requirements associated with it. 

8. An assurance case is generated using Resolute, confirming that security goals are supported by 
evidence (maintained by the framework). 

 

4.3.3.2. Component workflows  

Three are the main challenges model checking has to overcome. First, both the system and the property 
need to be amenable to formalisation. Second, the existence of a decision algorithm is determined by the 
language used in formalisation; it might be possible to employ algorithms that are either capable of proving 
validity or showing invalidity, but not both. Third, such algorithms need to be able to scale to complex 
systems, where the number of system states grows exponentially with parameters and components. This 
problem, known as “state space explosion”, can be addressed by means of techniques like abstraction, 
which simplifies the model to an overapproximation of it, so that if the property holds in the 
overapproximation, then it holds for the original model; this comes at the cost of spurious 
counterexamples, only applicable to the abstract model, which need to be identified and removed. 
 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 44 of 177 REWIRE D2.1 

  

      

 
Figure 4.6: Model checking sequence diagram 

 
Theorem proving is typically done with the help of proof assistant software (such as Coq, Isabelle, F*, 
Lean). It can in principle handle larger systems and more types of properties than model checking can, 
however it also typically requires user guidance (not automated), although many theorem provers include 
ways to automate trivial proofs. 
 
In the context of REWIRE, theorem proving will be used to prove functional correctness of (parts of) the 
AES mode of operation developed by UCL. Requirements in theorem proving are represented as the top-
level goal (or set of goals) to be proven and are typically expressed in some form of logic (e.g., 
propositional, first order, higher order). It should be noted that if the properties / theorems to be proven 
refer to particular aspects of a model, these aspects need to be modelled as well in the language of the 
theorem prover, which typically resembles a functional programming language (i.e., using recursion 
instead of loops, featuring immutable data structures etc. 
 
Using a proof assistant typically requires manual effort. After modelling the requirements as the high-level 
goal to be proven, if this goal is simple enough, the tool can prove it automatically. Otherwise, the user 
has to come up with a way to decompose the high-level goal into subgoals. Proof that a goal is implied 
by its subgoals is typically trivial (done automatically by the tool). Then, the user has to guide the tool into 
proving the subgoals. These can be trivial or not, in which case they may need to be broken down into 
further subgoals, until everything can, eventually, be verified by the tool. 
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Figure 4.7: Theorem proving workflow executed at design time 

 
Model Checking Example  
As a simple example to understand how model checking works, let us consider a function that adds two 
8-bit unsigned integers 𝑎  and 𝑏 , both constrained to take values smaller or equal than 128. The objective 
is to verify whether unsigned overflow is possible under these conditions. Using the formal modelling 
language SMV, the adder can be represented as follows: 
 

 

The inputs 𝑎  and 𝑏  are encoded as unsigned words 8 bits long, constrained as needed; the output c is 

defined as the sum of 𝑎  and 𝑏 ; the target property states that c must be greater or equal than both 𝑎  and 
𝑏 . 

An execution of the model checker nuXmv, that uses SMV as input language, shows that the property is 
not valid and that indeed unsigned overflow is possible, by returning 𝑎 = 128, 𝑏 = 128 as a 
counterexample assignment, in correspondence of which 𝑐 = 0 . 
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4.3.4. Secure System configurations and Security Controls Enforcement  

4.3.4.1. Description and functional objective  

The REWIRE architecture will focus on mechanizing the formal verification outputs into enforceable 
security policies that will govern the device operation throughout the executed use-case scenarios. This 
attempt will be a semi-automated activity as the verification results extracted from specialized models at 
the design time will require the formal verification expert to interpret the outcome into tangible security 
constraints, to meet the original requirements, proven from the models but not yet realizable into the 
device. As in the current state of the art, formal verification processes are often decoupled from the 
software or hardware artefacts development (unless there is a sound code-HDL generation module), it is 
of paramount importance for the security engineers to follow the models’ blueprints (e.g. inter-outer 
procedural calls, sequence of execution, atomic operations or deterministic algorithmic steps) in order to 
‘secure’ their implementations from property violations previously proven using formal verification tools. 
 

4.3.4.2. Component workflows  

From the REWIRE architecture point of view, policy synthesis and enforcement will be composed by two 
different engineering operations. Those operations will be mainly driven by the outcome of the formal 
verification approaches (successful or fail result), enforcing the engineer to attempt further safeguarding 
routines to be added on top of the device. Those routines will be following either the form of monitors or 
conditional constraints-rules that will protect the device against events previously not proven by formal 
verification techniques or from properties for which the verification has generated detailed 
counterexamples. Thus, REWIRE security controls will be categorized as follows:  

- Formally verified design artefacts: for a series of critical components’ interconnections residing 
either at software or hardware level, after the successful correctness verification, the underlying 
assurance cases (models connected to evidence proving their properties) will enforce the 
presence of the necessary links (e.g., inputs/outputs from inner-device communication) between 
different components. The latter, based on application-driven requirements may be mapped both 
at the trusted or the untrusted zone of the device. Formal verification will guaranty that the 
presence of the link is necessary; at the same time, a security enforcement rule may enforce the 
establishment of the link overriding any authorization principles that from the application level is it 
required to be executed. Links could be also present and validated between the DSP cores 
(executing software tasks) and the RISC-V hardware accelerators that perform critical 
cryptographic operations per user request. If for example, isolation is proven to be correctly 
implemented through formal verification, and if the representative isolation model is being followed 
to architect and develop the isolated core, then there is no need for the policy to form additional 
constraints to safeguard the core’s isolation since this is proven by-design. If though a new 
extension of the core is being considered, without capturing this at the model level, then the 
security controls with respect to core isolation properties need to include additional checks at the 
core level, whether e.g., an atomic execution of critical processes remain uninterrupted from other 
events. Finally, failed verification outcomes that also provide evidence of property violation can 
also yield counterexamples (state-based information) that the user may visit to identify the error 
and correct it if possible. If for some engineering issues the property remains violated, then the 
counterexample could be used as a ‘negation’ monitor that will prevent the execution of events 
that may lead to a real state where the property is violated.  

- Security policy optimization and management: The security policy synthesis and optimization 
will consist of a) constraints derived from the formal verification outcomes, b) additional security 
controls derived by requirements not captured in verification models and c) not verified 
requirements that are being considered as assumptions on the verification models. All 
documented assumptions that have been defined at the formal verification activities need to 
generate a list of constraints to be enforced by the policy; those assumptions based on expert 
knowledge review, can yield additional constraints to the device operation level that couldn’t be 
verified at the design time, yet it is necessary to be validated at run-time. At this stage an optimized 
and conflict resolution mechanism will be also in place to effectively generate the ideal 
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enforcement rules that do not overlap or conflict with each other.  
 

 
Figure 4.8: Security Policy & Controls sequence diagram 

 

4.4 Runtime Architecture and Functional Components 

While the previous section was focused on the description of the components comprising the design-time 
phase, this section focusses on the individual components of the runtime phase of REWIRE. For each of 
them, details of their design and their functional objectives are given. 
 
 

4.4.1.  Risk Assessment 

4.4.1.1. Description and functional objective  

The main objective of the risk assessment, as its name suggests, is to perform real time monitoring and 
evaluation of the potential risks on the underline devices, so that to enable the Security Administrator to 
take informed decisions, corrective actions or re-evaluate the theorem proofs of the design and runtime 
security measures. Risk assessment (RA) is part of both the Design and Runtime phases of the 
deployments’ lifecycle. RA provides real-time monitoring and evaluation of the a) Risk Indicators provided 
from the AI-based Threat Intelligence and b) the SW/FW Validation components and c) the previous 
calculated Risks (during design time or the last executed risk assessment during runtime) in order to 
generate the (updated) risk graph and (re-)calculate the cyber security risks, tailored to the REWIRE’s IoT 
ecosystem. The Risk Assessment is a core part of REWIRE and provides qualitative and quantitative risk 
estimations to increase cybersecurity awareness. 
 

4.4.1.2. Component workflows  

In the context of RA, two main workflows have been identified. The workflows include the Risk 
Assessment, the SW/FW Validation, and the AI-based Threat Intelligence components independently of 
the running phase (e.g., design or runtime). Both workflows trigger the Risk Assessment based on the 
potential identified Risk Indicators either from the AI-based Threat Intelligence or the attestation results 
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produced by the SW/FW Validation and generate the new calculated Risks. Below we provide in detail 
the workflows in both phases. The risk assessment component is used mainly in the context of the runtime 
phase for dynamically analysing the risk indicators stemming from the various detection/monitoring. 
However, in this section we refer also to the design time phase, as the risk assessment can be used to 
perform an initial analysis of the risks existing in an initial deployment and can be considered in the design 
time phase. 
 
Design Time Phase: During this phase the Risk Assessment component runs for the first time. Thus, no 
previous risk calculations will be considered. The Security Administration provides for the first time the 
underline Assets, the Requirements, and the Security Policies against which the Risk Assessment will 
calculate the Risks. The Risk Assessment component considers the asset topology and the underline 
threats/vulnerabilities so that to generate the risk graph along with the corresponding risks. 
  
Runtime Phase: During this phase, the Risk Assessment component runs after the first time. Thus, 
previous risk calculations will be considered for the new risk estimation. The Security Administration 
reevaluates potential updates on the Assets, the Requirements, and the Security Policies against which 
the Risk Assessment will calculate the Risks. In this phase, when the AI-based Threat Intelligence detects 
a misbehaviour, or the SW/FW Validation a failed attestation a new Risk Assessment process is initiated. 
Now the Risk Assessment also considers, apart from the asset topology, the threats/vulnerabilities and 
security events, the previously generated risk graph.  
 
Figure 4.9 below depicts these two flows that initiate a new risk assessment during runtime.  
 
 

 
Figure 4.9: Risk Assessment Component Workflow 

 

4.4.2.  AI-based Threat Intelligence 

4.4.2.1. Description and functional objective  

The AI-based Threat Intelligence engine is a hybrid local cloud-based component designed to analyse 

and detect threats that may arise during the REWIRE Runtime phase. It leverages the power of Artificial 

Intelligence (AI) algorithms trained on vast amount of data. The training of the algorithm(s) utilises the 

data collected through the Secure Oracles and stored in the Off-chain Data Storage and is performed 

over the cloud-based infrastructure of the engine. Upon training of the algorithm(s), the AI-based Threat 

Intelligence is capable of undertaking automatically on-the-fly misbehaviour detection, by utilising the data 

ingested through the Secure Oracles, where part of the operations is performed at the Secure Oracle 

level (for example the data-veracity activities), and other at the cloud level. The key output of the AI-based 

Threat Intelligence will be values of risk indicators related to the identified threats, that will be provided as 

input to the Risk Assessment module so that the System Administrator can identify the threats and take 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 49 of 177 REWIRE D2.1 

  

      

promptly corrective actions. In this direction the primary objective of the AI-based Threat Intelligence 

engine is to detect and identify potential threats, by analysing a wide range of data, including network 

logs, system logs, etc., from the project’s pilots to identify suspicious activities or patterns that may indicate 

an impending threat. To achieve this the engine uses a large volume of historical data to train AI algorithms 

(manual process); thereafter the trained AI algorithms will continuously analyse (automated process, 

based on defined schedules) incoming data streams in near real-time, thus enabling the engine to detect 

emerging threats promptly. By leveraging the power of AI, the engine can handle a vast amount of data 

quickly and efficiently, ensuring a high-level of accuracy in threat detection. Moreover, the engine will 

continuously learn and adapt to evolving threat landscapes, by incorporating feedback loops to update 

and refine its algorithms based on new data and emerging threat patterns. This adaptive learning 

capability enhances the engine's effectiveness in detecting emerging threats, providing robust and 

efficient threat intelligence capabilities with the REWIRE ecosystem. 

 

4.4.2.2. Component workflows  

As shown in the following Figure 4.10, two key workflows are anticipated for the operation of the AI-based 
Threat Intelligence engine within the REWIRE framework.  
  
The first one entails the training of the AI Misbehaviour detection algorithm(s), where transactions (i.e., 
data request) are made from the AI-based Threat Intelligence engine to the Secure Oracle, which in turn 
requests the appropriate data location pointers from the Blockchain Infrastructure. Utilising these pointers, 
the Secure oracle can fetch the required data files from the Off-Chain Data Storage, which in turn returns 
the data files related to the pointers. This process ensures that sensitive data remains protected and is 
only accessible by authorized entities. Finally, having acquired the data files manual training of the AI 
Misbehaviour detection algorithm can take place within the engine, however the acquired data files may 
undergo preprocessing such as cleaning, normalising, and transforming the data into a suitable format for 
the training process. If necessary, adjustments and improvements are made to enhance the model's 
accuracy and efficiency. After successful training and evaluation, the AI Misbehaviour detection algorithm 
is deployed in the AI-based Threat Intelligence Engine's operational environment. To ensure the 
algorithm's ongoing effectiveness, scheduled feedback loops are anticipated to be established to collect 
new data for periodically retrain and update the AI Misbehaviour detection model, ensuring it stays up to 
date with emerging threats. 
  
The second workflow involves the near-real time Misbehaviour detection: Upon training of the algorithms, 
the AI-based Threat Intelligence Engine is capable to undertake “on-the-fly misbehaviour detection”, 
automatically (based on predefined schedules) executing the model to analyse incoming data streams in 
near real-time, enabling the detection of emerging threats promptly. As a starting point, the AI-based 
Threat Intelligence Engine registers with the Secure Oracle, which in turn checks the veracity of the data 
requested and pushes data to the Off-Chain Data Storage. Once satisfied, the Blockchain Infrastructure 
returns the appropriate data pointers. Each data request is interpreted as a new transaction, recorded in 
the Blockchain Infrastructure which sends back to the Secure Oracle the relevant transaction pointer, so 
it can proceed with requesting the data from the Off-Chain Data Storage. The data are returned to the 
Secure Oracle, and thereafter pushed back to the AI-based Threat Intelligence Engine, which executes 
the model towards identifying threats. In the event abnormalities or threats are identified from the model, 
the AI-based Threat Intelligence Engine will push values of risk indicators to the Risk Assessment 
component.   
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Figure 4.10: AI-based Threat Intelligence Workflow 

  

4.4.3.  Blockchain Infrastructure 

4.4.3.1. Description and functional objective  

The Blockchain Infrastructure serves as the foundational and robust framework within the REWIRE 
project, providing a decentralized and secure platform for trusted data verification and access control for 
all users. It functions as an immutable and distributed ledger, storing a tamper-resistant record of 
transactions and data interactions within the system. The primary objective of the Blockchain 
Infrastructure is to establish a transparent and verifiable data management system, ensuring the integrity 
and reliability of data exchanged and accessed by various components within the REWIRE ecosystem. 
Through the use of blockchain technology, the component ensures that all data interactions and 
transactions are recorded in a chronological and transparent manner. Each data entry is securely linked 
to the preceding one, creating an unbroken chain of data history that cannot be altered or modified 
retroactively. This inherent immutability safeguards against unauthorized tampering and enhances the 
overall trustworthiness of the system. Moreover, the decentralized nature of the blockchain ensures that 
no single entity has full control over the data, preventing any potential single point of failure and enhancing 
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the system's resilience and fault tolerance.  
 
Another pivotal aspect of the Blockchain Infrastructure is its role in managing access control for users 
within the REWIRE ecosystem. Utilizing smart contracts and cryptographic mechanisms, the blockchain 
enforces predefined rules and permissions, allowing users to interact with specific data and functionalities 
based on their authorization level. This ensures that sensitive data is only accessible to authorized 
personnel, bolstering data privacy and security. By providing a transparent, tamper-resistant, and 
decentralized data management system with robust access control mechanisms, the Blockchain 
Infrastructure component enables the REWIRE project to achieve a high level of trust, accountability, and 
efficiency in handling critical data and transactions. Smart contracts are a fundamental component of the 
REWIRE project's Blockchain Infrastructure. REWIRE generally utilizes two smart contracts: the Oracle 
Contract and the User Contract. The oracle contract serves as an interface to off-chain oracle components 
that allows users to request external/internal data and handle data delivery, while the user contract 
interacts with the main oracle contract to manage user identity and access control and handles request 
response and cancelation. These two contracts together enable secure and decentralized data retrieval 
and processing within the REWIRE blockchain ecosystem. 
 

4.4.3.2. Component workflows  

In the REWIRE ecosystem, the Blockchain Infrastructure emerges as the central, wielding its power to 
facilitate data flow and enforce crucial access control and smart contract functions. It is important to note 
that although the blockchain is a closed and trusted system, incoming external data sources rely on 
another component. This is where the Secure Oracles component takes the stage, engaging in a 
sequence of actions that begin with data verification requests from External Data Sources. Ensuring 
security, the Secure Oracles relies on TEEs to process data within isolated enclaves, guaranteeing 
confidentiality and integrity. The integration of a TEE into the Secure Oracle is crucial because it allows 
oracle's critical operations, such as data retrieval and data veracity check, to occur in a secure enclave, 
shielding them from potential interference by malicious processes or the underlying operating system. 
This isolation ensures the confidentiality and integrity of data. For instance, consider a scenario where 
the oracle fetches stock market data for a decentralized trading platform. Without a TEE, malicious 
software on the host machine could manipulate or eavesdrop on this sensitive data. However, with a TEE, 
the data retrieval process is protected, and oracle can cryptographically prove to remote clients that it 
operates within a secure enclave, guaranteeing the authenticity and trustworthiness of the data.  
 
Upon successfully executing a specific oracle operation, typically cantered on data retrieval from external 
sources, there are two attestation processes that come into play within the TEE. The first pertains to the 
validation of the data's origin, ensuring that the source of the data maintains its integrity and authenticity. 
This is imperative, as it vouches for the purity and legitimacy of the data before any further action is taken. 
The second type of attestation dives deeper, focusing on the secure oracle itself. This attestation is crafted 
to guarantee that the state and condition of the oracle remain uncompromised and that its operations are 
conducted in a secure and trustworthy manner. In essence, these dual attestations not only validate the 
data's origin but also secure the very processes of the oracle, establishing a robust shield of trust and 
security. Subsequently, both the processed data and its corresponding attestation are securely stored 
within a blockchain-based smart contract, forming an immutable record of the operation's validity and the 
data's reliability within the REWIRE ecosystem. This decentralized and immutable ledger safeguards the 
data, ensuring permanence, transparency, and tamper resistance, underlining the ecosystem's 
unwavering trustworthiness and data reliability.  
 
Moreover, in cases where data surpasses Blockchain capacity, Off-Chain Data Storage acts as a reliable 
alternative, harmonizing data and indexes seamlessly. It's pivotal to understand that when data is 
submitted to the Off-Chain Data Storage, it is often processed with suitable encryption or signing 
primitives, depending on the requirements. Typically, data is stored encrypted, and a pointer to this 
encrypted data is then saved to the blockchain. Exclusively relying on the secure Oracle as the singular 
entry point for data transfer into the blockchain, REWIRE maintains a distinct approach compared to other 
blockchain systems where peers might have the capability to upload data. This strategic decision ensures 
a stringent security framework, as even data uploaded by internal entities within REWIRE undergoes 
meticulous filtration and verification processes by the Oracle. This rigorous protocol is imperative to 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 52 of 177 REWIRE D2.1 

  

      

uphold the highest standards of security, making certain that all data entering the blockchain aligns with 
REWIRE's uncompromising safety measures. The aforementioned workflow is depicted in Figure 4.11 
below. 
 

 
Figure 4.11: Blockchain Infrastructure Workflow 

  
ABAC-based data sharing 
The REWIRE project's Blockchain Infrastructure introduces a dynamic layer of data querying and pushing, 
underpinned by the Attribute-Based Access Control (ABAC) mechanism. Beyond standard access 
systems, ABAC offers a context-rich approach, factoring in attributes of the user, the resource, and the 
environment. Within the REWIRE framework, these attributes are closely tied with Verifiable 
Presentations (VPs) and specific security-related attributes that devices manifest. Such granularity in data 
interaction ensures that not only is data access transparent but also inherently secure. 
  
When entities, whether users or devices, intend to query or push data to the blockchain, the journey of 
their request starts with the oracles. Acting as gatekeepers, oracles first assess the request's attributes 
and VPs. These VPs, complemented by security-related attributes like device trustworthiness score or 
prior interaction logs, are pivotal in discerning the authenticity and intentions of the requesting entity. After 
the oracles validate the entity's attributes and VPs, they perform another crucial task: verifying the veracity 
of the data. This step is non-negotiable, ensuring that the data being interacted with maintains its integrity 
and has not been compromised. Such validation becomes especially vital when the data is instrumental, 
like in cases where it feeds an AI-based misbehaviour detection system. Only after the oracles have 
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successfully vetted both the entity's credentials and the data's veracity do the request proceed to the 
Blockchain for transaction completion. 
 
 
BC-based Distribution of SW updates 
In the ever-evolving digital landscape, software (SW) updates are indispensable to ensure the security, 
efficiency, and relevance of systems. Leveraging the REWIRE project's Blockchain Infrastructure for SW 
update distribution brings transparency, accountability, and ensures the authenticity of distributed 
updates. Oracles, as intermediaries between the blockchain and external entities, play a pivotal role in 
managing and verifying these updates. 

The REWIRE framework's software update journey commences with the Software Service Provider 
signing and encrypting the update. This process results in a reference value, usually a hash or digital 
signature, which captures the update's essence. Alongside pertinent metadata, such as version specifics 
and targeted devices, this value gets a permanent spot on the blockchain via the Secure Oracle. 
Concurrently, the actual software update is stored in off-chain storage for secure and efficient retrieval. 
Devices, when alerted about new updates by the Oracle, don't directly access the blockchain or off-chain 
storage. Instead, the Secure Oracle serves as their primary gateway. Upon a device's request for an 
update, the Oracle first consults the blockchain to fetch the reference value. Subsequently, it interacts 
with the off-chain storage to retrieve the actual software update, ensuring the update's sanctity remains 
uncompromised. Upon receiving the update and its reference value from the Oracle, devices have the 
autonomy to assess the update's integrity. They use the reference value as a validation benchmark, 
ensuring the update's authenticity. After successful validation, devices integrate the update, marking the 
completion of its journey from a blockchain record to a tangible real-world implementation.  

 

Figure 4.12: Blockchain Based Distribution of SW Updates 
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4.4.4.  Secure Oracles 

4.4.4.1. Description and functional objective  

Secure Oracles serves as the pivotal and trustworthy bridge that seamlessly connects the blockchain 
infrastructure to external data sources residing in the off-chain realm within the REWIRE ecosystem. It 
plays a critical role in facilitating secure and reliable data ingestion, enabling the blockchain to interact 
with real-world information while ensuring data integrity and confidentiality. The primary objective of 
Secure Oracles is to establish a resilient and tamper-resistant communication channel that allows the 
system to access and utilize valuable data from off-chain sources without compromising the security and 
immutability of the underlying blockchain. The component leverages the power of TEEs, a state-of-the-
art technology designed to create secure enclaves for executing sensitive operations, guaranteeing that 
data exchanged between the blockchain, and off-chain sources remain protected from unauthorized 
access and tampering. By harnessing the capabilities of TEE, Secure Oracles establishes a secure layer 
of communication that safeguards against potential threats and ensures the veracity and authenticity of 
the data being ingested into the system. The use of TEE-based technology adds an extra layer of 
assurance that data veracity activities are performed with utmost reliability, boosting the overall 
trustworthiness and credibility of the REWIRE ecosystem.  
 
Furthermore, Secure Oracles operates with the goal of enabling smooth and seamless integration of 
external data into the blockchain environment. By acting as a trusted intermediary, it allows the AI-based 
Threat Intelligence engine and other components within the system to access a wide array of data 
sources, including network logs, system logs, and other relevant datasets. Overall, the Secure Oracles 
(TEE based) component plays a pivotal role in maintaining the integrity, security, and efficiency of data 
communication between the blockchain and off-chain data sources, contributing to the robustness and 
effectiveness of the REWIRE ecosystem's threat intelligence capabilities. 
 
 

4.4.4.2. Component workflows  

The presented sequence diagram illustrates the data flow and processing steps of Secure Oracles 
component in the REWIRE ecosystem. The sequence starts with the External Data Source sending data 
to the Secure Oracles for verification. At this juncture, Secure Oracles initiates a data verification Request, 
signalling its intention to securely process the received data. Within the realm of secure data processing, 
Secure Oracles engages TEE. This mechanism ensures that the data undergoes a series of secure 
processing steps within isolated enclaves, guaranteeing its confidentiality and integrity. Secure Oracles 
play a pivotal role in ensuring data veracity before it becomes part of a blockchain. Imagine a scenario 
where external financial transaction data is destined for blockchain inclusion. Oracles initiate a 
comprehensive verification process, encompassing not only integrity checks but also data format, version, 
and size validation. Initially, they create a unique data fingerprint using cryptographic hashing and 
compare it to a reference value on the blockchain to verify data integrity. Simultaneously, they validate 
the data's source through digital signatures. Once source authenticity is confirmed, an attestation is 
generated to affirm data authenticity and adherence to the specified format, version, and size. Following 
this, a second attestation is initiated, focusing specifically on the TEE or the secure oracle. This latter 
attestation assures the unblemished operational state of the oracle, underlining the robustness of the 
entire system. Only when the data successfully passes all these checks is it deemed eligible for blockchain 
inclusion. In the event that data processing fails, the Secure Oracles promptly notifies the Data Source 
about the processing failure, leading to the termination of the data processing procedure. As Secure 
Oracles successfully attests the secure execution of the data processing, the processed data and 
corresponding attestation are submitted to a Smart Contract in the Blockchain. Subsequently, the Smart 
Contract, acting as a decentralized and immutable ledger, stores both the processed data and its 
attestation securely within the "Blockchain. This storage within the Blockchain ensures a high level of data 
permanence, transparency, and tamper resistance, further solidifying the system's trustworthiness and 
data reliability. Finally, one optional process is that when the data to be uploaded to the blockchain is too 
large, the source needs to be dumped into the Off-Chain Data Storage, and the index of the data needs 
to correspond one-to-one with the storage location. 
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Figure 4.13: Secure Oracles Workflow 

 

4.4.5.  Off-chain data storage 

4.4.5.1. Description and functional objective 

The Off-chain Data Storage plays a crucial role in ensuring efficient and secure storage of data collected 
through the Secure Oracles to the Blockchain Infrastructure during the REWIRE runtime phase. Its 
primary purpose is to serve as a secure and dedicated data storage facility responsible for holding a wide 
range of data files generated from REWIRE runtime phase operations (such as attestation results and 
raw data from distributed sources) also serving as a repository for other sensitive information not intended 
for direct storage on the Blockchain Infrastructure. Within the Blockchain Infrastructure, the Off-chain Data 
Storage is referenced using pointers (indexes) that indicate specific data locations. When data is needed, 
requests are made by retrieving these pointers, effectively allowing access to the relevant data without 
exposing the actual content directly. By employing this mechanism, the Off-chain Data Storage maintains 
its security and confidentiality since its contents are not directly accessible by any other component or 
entity. Instead, all interactions with the Off-chain Data Storage are solely managed through the Blockchain 
Infrastructure, which ensures that only authorized operations, such as writing, updating, and reading data, 
are carried out, preserving the integrity and confidentiality of the stored information. 
 

4.4.5.2. Component workflows  

As shown in Figure 4.14, the data collected through the Secure Oracle, are stored in the Off-Chain Data 
Storage. Once the data are stored, indexing of the data takes place in Elastic, while the relevant data 
pointer(s) are sent back to the Secure Oracles maintaining them, so that it can be utilised in future data 
requests from other components (e.g., AI-based Threat Intelligence Engine). Data indexing involves 
organising and structuring the data in a way that makes it easily searchable and retrievable. This step 
enhances data accessibility and facilitates quick and efficient data retrieval when needed. Finally, data 
pointers are sent to the Blockchain Infrastructure updating also the transaction record. Overall, through 
this workflow, the system can efficiently collect, store, and retrieve data while maintaining a high level of 
security and confidentiality. The use of data pointers and the involvement of the Secure Oracle as an 
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intermediary enhances the overall integrity of the data storage and retrieval processes, making it a robust 
and reliable component within the REWIRE runtime framework. 
 

 
Figure 4.14: Off-chain Data Storage Workflow 

 

4.4.6.  Firmware & Software Validation 

4.4.6.1. Description and functional objective  

The primary objective of the SW/FW Validation component is to identify weaknesses in a given 
firmware/software image. It does so by using a combination of dynamic binary analysis by means of 
fuzzing, and static binary analysis by means of concolic execution. Thus, the information gathered on 
weaknesses is shared with various components of the REWIRE architecture. The secondary objective is 
to instrument critical software inside the firmware such that it can share information with other programs 
at runtime. An attestation agent running in the trusted environment of the REWIRE architecture will receive 
this information and use it to attest the correct functioning of the device at runtime. Any evidence resulting 
from this agent will then be shared to the blockchain. 
 

4.4.6.2. Component workflows  

During the REWIRE design time phase, the SW/FW Validation component will unpack the provided 
firmware image, taking out software that is deemed critical to the operation of the device. Using the file 
system found in the firmware, information about the device is gathered. The software is then emulated 
using this information and tested for weaknesses using its dynamic validation component and the static 
validation component. In case the dynamic component gets stuck during its analysis it will request 
additional information from the static component, which will be gathered using concolic execution. After 
the analysis finishes, its results are sent back to the user and to an instrumentation component. The 
instrumentation component will use this information to choose critical programs to instrument, as well as 
instructing the attestation agent on what correct behaviour of these programs looks like. After creating a 
firmware image with the instrumented programs and behavioural information it is deployed to a device. At 
runtime the instrumentation hooks in the programs will communicate with the attestation agent running in 
the trusted execution environment, which will attest the correct functioning of the program based on this 
information. Any results are then shared with the blockchain, which can distribute these results to other 
components in the REWIRE architecture.  
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Figure 4.15: SW/FW Validation Workflow 

 

4.4.7. Zero-touch onboarding 

4.4.7.1. Description and functional objective  

In terms of REWIRE, we desire secure and privacy-preserving seamless commissioning of devices into 
the network whilst providing device provenance and configuration integrity verification. The idea is for 
policy enforcement components to be able to instantiate the launch of the necessary enclaves as part of 
the underlying TEE, which is dictated by the system configuration.  
 
A standardised approach for onboarding is the use of Manufacturer Usage Description (MUD) files which 
define the intended use of specific-purpose devices. MUD profiles are useful for security purposes to limit 
the attack surface of devices by defining policies and Access-Control Lists (ACLs) to restrict 
communication with other devices or services. Whilst the standard for MUD files gives a high-level method 
to automate deployment of IoT devices into a network in a secure manner, it does not specify the 
mechanisms for obtaining and enforcing such policies in a trusted and secure way. Trivially, a user could 
send their MUD file URL to the corresponding network components in the domain where it is to be 
deployed. However, this is insecure since a malicious user could forge its device identity and credentials 
to gain unauthorised access to the network. Thus, for secure and trustworthy MUD file obtainment during 
device bootstrapping, the Extensible Authentication Protocol (EAP) protocol is used in [REF-155] as part 
of the authentication, authorization, and accounting framework (AAA). The EAP-AAA protocol utilizes Pre-
Shared Key (PSK) authentication, which is especially useful for lightweight devices which may be too 
resource constrained to handle public-key cryptography.  
 
The design in REWIRE extends that of [REF-155] to use MUD profiles with the EAP-AAA merged with 

DAA. This approach of DAA leveraging ZKPs is needed to supplement EAP-AAA, since the latter protocol 

does not provide the privacy assurances necessary to REWIRE. The idea of using MUD profiles is to 

create the appropriate key restriction usage policies which need to be translated into enforceable rules. 

Such policies are used for protecting when each attribute-based signing key can be used, based on the 

output of the runtime attestation in which the mechanism for attestation is leveraging zero knowledge.  

 

During the zero touch onboarding, to preserve privacy REWIRE requires the attestation of the satisfaction 

of policies in a zero-knowledge manner to access services, such that policies are hidden in the process. 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 58 of 177 REWIRE D2.1 

  

      

That is, given information from the policy orchestrator a device should be able to attest to a MUD verifier 

that it is at an expected state, without releasing the actual state to the Verifier. If the output of this process 

is correct, then the MUD Verifier securely transmits these MUD policies onto the blockchain. 

Consequently, a secure and authenticated channel is established and used as a structure holding key 

restriction usage policies. 

 
Note the following: 

• The device must authenticate to the MUD Profile server to activate the long-term device identity 
key (which is pre-established) during runtime, as well as the SW update key. This identity key is 
then stored in the TEE. 

• In REWIRE, threats must be identified and bound to the key restriction usage policies of the MUD 
profile.  

• Attestation evidence is stored in the MUD file stored on the blockchain (BC). Moreover, a MUD file 
per device means that the user/device can update the attestation results to the BC during runtime.          

• Attributes of the device, or a derived predicate of the attribute (Boolean assertion), may be 
included into the MUD profile itself.  

• If attribute values are stored by the trusted component of Keystone, extra policies should be 
applied to ensure the trustworthiness of the device state. However, attributes do not necessarily 
need to be associated to key restriction usage policies.  
 

4.4.7.2. Component workflows  

Initially, keys need to be established between the device and Privacy CA to establish a secure and 

authenticated communication channel for onboarding the device into the REWIRE network. During this 

phase, the user of the edge device will request the MUD file from the Privacy CA (DAA Issuer), using a 

MUD URL related to specific components in the network. The MUD domain manager makes an 

authentication request, and the device responds with a list of attributes and a zero-knowledge proof (ZKP) 

of ownership. Note, proving ownership in zero-knowledge is important to preserve security. Following the 

device onboarding request, the Privacy CA interacts with the manufacturer domain, which includes 

interactions with the MUD server and AAA server. The former interaction is to request the device profile 

and policies, and the latter interaction is for the user and AAA server to mutually authenticate the user 

and the network. Then the identified policies are pushed to the REWIRE blockchain infrastructure so that 

to enable the trust-aware continuous authorisation and authentication processes of REWIRE and the 

attribute assess control mechanisms 

 

The enrolment phase is needed in REWIRE to verify a device for access to resources in the network in a 

secure manner (authentication and authorization). To start, the user will request (using a MUD URL) the 

initialization of the enrolment phase. The privacy CA issues the MUD file to the MUD Verifier and issues 

DAA credentials corresponding to the URL sent by the user. The user proceeds to send the issued DAA 

credentials to the attestation agent (acting as the DAA prover) by creating a verifiable presentation 

leveraging ZKPs, such that the VP relates to attributes regarding the device status. Note, the policy 

orchestrator (PO), contained within the facility layer of the device, can be viewed as the MUD manager 

component in the MUD architecture of [REF-155]. The PO translates and maintains an updated version 

of the rules specified in the key restriction usage policies created during onboarding. The attestation agent 

accesses attestation policies from the PO, which are contained within the MUD file and a ZKP of the VP 

is sent by the attestation agent to the MUD (DAA) verifier to perform a verification check in zero-knowledge 

of attribute ownership. The device identity key, other public keys, and material from the MUD file are sent 

to the verifier by the secure enrolment agent to assist in the acceptance of device access to requested 

resources. Next, the verifier records and confirms the secure enrolment of the device to the BC wallet via 

secure oracles. Note that the MUD file and cryptographic keying material used in the enrolment process 

are stored in the protected TPM of the wallet in key hierarchies, such that, during runtime attestation the 

file and keys can be updated, revoked, and reviewed. The proceeding diagrams are split in two to 

demonstrate the zero-touch onboarding process, followed by secure enrolment.  
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Figure 4.16: Zero-touch onboarding process 

 

 

Figure 4.17: Secure enrolment 

 

4.4.8. Software and Firmware Update Distribution Service 

4.4.8.1. Description and functional objective  

The IETF has emphasized the importance of simplifying the process of updating IoT devices [REF-156]. 
To address this, a SW/FW update service will be used to enable secure over-the-air delivery of patches 
for IoT devices. This component utilizes innovative distributed technologies to accomplish the task of 
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offering a comprehensive solution for managing devices, handling security patches, and coordinating their 
deployment. The system operates in a distributed manner, as the scale of some IoT deployments can be 
unmanageable with a centralized software distribution component. Instead, several trusted agents 
working from the cloud backed are synchronized leveraging on an inbuilt reverse proxy mechanism and 
the distributed ledger, enabling update rollouts of different multiplicities (one-to-one, one-to-many). 
  
All events related to the Firmware/Software Update Over the Air are stored in the ledger, thus it contains 
critical evidence of updates along with end-devices profiles (such as status of the onboarding, current 
SW/FW version, addressing parameters etc.) needed by distribution agents. Furthermore, the SW/FW 
binaries are stored on the off-chain data storage providing a centralized repository that eases the 
synchronization of the distribution agents during the rollout process of an update. The transmission of 
update’s binaries from a distribution agent to an end-device is supported by a secure channel established 
through an AE engine based on securely designed AES encryption mechanism and cryptographic 
materials that provide protections from side-channel attacks, authentication of updates and, in some 
cases, confidentiality of the update. 
 

4.4.8.2. Component workflows 

The diagram on Figure 4.18 shows the SW/FW packet management prior to its distribution. Through the 
previously mentioned reverse proxy mechanism, one of the distribution agents receives a vulnerability-
free update package, after the SF/FW Validator component assesses the update package.  
 
If the SW/FW package needs cryptographic protection, then it's sent to the REWIRE Crypto agility layer. 
The crypto layer can apply different cryptographic mechanisms to the SW/FW packet depending on the 
update multiplicity: 

• One-to-one: the packet will be encrypted and signed using symmetric keying material. 

• One-to-many. The packet will be only signed using asymmetric keying material. 
 
It must be highlighted that the packet treatment by the REWIRE crypto agility layer is optional. If the packet 
does not need protection it can continue to the following steps of the SF/FW distribution without the crypto 
management.  Whether the packet is protected or not it is submitted to storage through the Secure Oracle, 
which interacts with the BC infrastructure to record all the new changes. If the packet is successfully 
submitted its data pointer is returned to the distribution agent for future reference and to keep a SF/FW 
version control. 
 

 

Figure 4.18: SW/FW Update Distribution 
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One-to-one update distribution 

In Figure 4.19, the update distribution with a one-to-one multiplicity is showcased. To handle the update 

tasks to the distribution component it must first be verified that a privileged actor issued it. The update 

task will contain the indexes of both the target end-device and the update packet that will be installed, 

while the reverse proxy mechanism will handle this update task to the distribution agents. The distribution 

agent will recover the profiles of the to-be updated end-device through the ledger to confirm that the 

update is applicable. If the operation can carry on, the distribution agent will then launch an update query 

to the end-device through the Secure Oracle contained the SF/FW packet reference. Upon receiving the 

query, the end-device will send an ACK and request the Secure Oracle for the SF/FW update packet. 

This packet will be forwarded from the off-chain data storage to the end-device through the Secure Oracle. 

If the SF/FW packet is protected with encryption or signature the device will make use of the REWIRE 

SC-resistant AE to decrypt/check the legitimacy of the packet. Once this last step is finished, the device 

will obtain the SF/FW packet to install. 

 
If both the decryption of the package and the update is successful, the end-device will send back an 

encrypted acknowledgment to the distribution agent. The distribution agent will receive and decrypt the 

acknowledgment while the Secure Oracle will update the BC data to reflect the new changes in the 

network. 

 

Figure 4.19: SW/FW Update Distribution Workflow (one-to-one) 
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One-to-many update distribution 

Figure 4.20 depicts the update distribution with a multiplicity of one-to-many. The first deviation with the 
one-to-one multiplicity case is found when the update task is issued, since the update task will contain a 
list of end-device indexes which will be handled to one of the distribution agents through the reverse proxy 
mechanism. The agent will recover the end-devices’ profiles from the BC infrastructure to check their 
information. The second deviation is the securitizing process of the update package as the multicast 
distribution of the update is not possible using symmetric key encryption. Instead, SW/FW packets are 
only signed using asymmetric keying material, which guarantees the authenticity of the packets, but no 
encryption is provided. In this case the packet distribution works just like the one-to-one multiplicity i.e., 
the end-device obtains the SW/FW packet from the BC infrastructure. 
 
However, if encryption is needed an application-layer object-encryption [REF-157] protocol that is 

compatible with multicast connections can be used [REF-158]. The distribution agent and end-devices 

will first perform a lightweight authenticated key exchange [REF-159] to generate the asymmetric 

cryptographic material used by the encryption protocol. In this case the SF/FW will not be obtained from 

the off-chain data storage, instead the distribution agent must launch the update query alongside the 

SF/FW packet itself, which will be handled to the end-device through Secure Oracles. 

 
Although the encryption-decryption of SF/FW is done using the object-encryption, the acknowledgments 
of the signature check and correct decryption are securitized with the symmetric AE just like one-to-one 
update case. 

 

Figure 4.20: SW/FW Update Distribution Workflow (one-to-many) 
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4.5 REWIRE-enabled Edge Device and Services 

This section, as its name suggest, is focused on the REWIRE-enabled edge devices and the supported 
services. The REWIRE-enabled device (recall the conceptual architecture in Figure 4.1) contains the 
REWIRE Facility Layer, as an intermediate layer for interaction between the agents and the REWIRE 
backend infrastructure. 
 

4.5.1.  REWIRE Facility Layer  

This layer is part of each REWIRE-enabled device that facilitates all the necessary agents of REWIRE. In 
other words, is the intermediate entity between the device itself and the backend infrastructure, providing 
the necessary interfaces to trigger and interact with the agents (e.g., Attestation Agent). It also contains 
the Policy Orchestrator as the main component to orchestrate and enforce the received policies to the 
agents. More details are provided in section 4.5.6 below. 
 

4.5.2.  Device trust-aware secure enrolment  

Secure onboarding of devices into the REWIRE network needs to cover trust-aware enrolment to better 
capture the “Trust vs. Privacy” trade-off we will consider when designing the ZTO protocol. In Section 7 
there is a discussion on zero trust security modelling which requires strict identity verification for every 
subject/entity onboarding. REWIRE requirements and functional components are designed to satisfy the 
pillars of a Zero-Trust Architecture (ZTA) in the following ways.  
 
Enhanced identity governance is an approach to develop a ZTA [REF-160] using the identity of actors as 
the core component of policy creations. The core idea of our ZTO protocol (see Section 4.4.7) is to link a 
device to its MUD profile and key restriction usage policies. Adopting a ZTA implies that devices are 
managing their own credentials, in turn, implying the design of an SSI [REF-161] management system to 
maintain privacy preservation. Thus, devices can selectively disclose attestation evidence in the form of 
verifiable presentations (VPs), sent to the authority (MUD Verifier) checking the operational assurance of 
the device. That is, to check integrity and certify the profile of a device. Note, runtime attestation evidence 
is formed by the continuous monitoring and measurements (behavioural and environmental assets) taken 
by REWIRE components. 
 
Verifiable credentials (VCs) can enable holders to prove their attribute-based credentials and they are a 
component of verifiable presentations (VPs) which are used for authorisation, whilst considering device 
trustworthiness and privacy considerations. Credential properties that should be considered for device 
onboarding in REWIRE includes, refreshing (updates), delegation, and blinding attributes. More 
importantly, the selective disclosure of attributes is important in REWIRE to preserve the privacy of 
specific attributes. Observe, the authors of [REF-162] provide a non-technical but useful summary of 
Anonymous Credentials and how to categorise their definition of ACs, based on how they achieve their 
core properties and how they are used. Moreover, the authors define two separate strains in which 
credentials are operated using zero-knowledge proofs OR re-randomised (blinded) by the prover between 
showings. Note, group signatures can be used as an alternative tool to ACs. 
 
In the ensuing, we focus on Attribute-based Signature (ABS) schemes as we believe ABS compliments 
the properties and requirements of REWIRE’s architecture. ABS schemes allow users to obtain attributes 
from issuing authorities, and sign messages whilst simultaneously proving compliance of their attributes 
with a verification policy. ABS demands that both the signer and the set of attributes used to satisfy a 
policy remain hidden to the verifier. Moreover, Hierarchical ABS supporting roots of trust and delegation 
was recently proposed in [REF-163] to mitigate problems in the centralised setting of ABS, such as 
scalability. Therefore, HABS is even more useful to the decentralised setting we propose in REWIRE. 
 
The Hierarchical Attribute-based Signature (HABS) primitive was introduced in [REF-163] to support 
delegation of attributes along paths from the top-level authority down to the users while also ensuring that 
signatures produced by these users do not leak their delegation paths, thus extending the original privacy 
guarantees of ABS schemes. The generic HABS construction also ensures unforgeability of signatures in 
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the presence of collusion attacks and allows for a dedicated tracing authority to identify the signer and 
reveal its attribute delegation paths such that the scheme has public verification to hold the tracing 
authority accountable.  
 
Furthermore, device onboarding in REWIRE must consider the converse process of revocation. In [REF-
164], revocation of credentials (performed by the issuer,) should not reveal any identifying information 
about the subject, the holder, the specific verifiable credential, or the verifier. Moreover, the issuer can 
disclose the revocation reason. Lastly, Issuers revoking VCs should distinguish between revocation for 
cryptographic integrity (for instance, corruption of the signing key) versus revocation for a status change. 
 
With respect to ABS (and HABS), revocation can be applied to signers or some of the attributes they 
possess, and it is a challenging property to ensure but equally important for privacy-preservation. Alas, 
the authors of [REF-165] highlighted that ABS schemes in the literature lacked efficient revocation of 
either signers or their attributes, relying on generic costly proofs. Resolving this problem was the main 
motivation for proposing the new HABS primitive in [REF-165]. Unfortunately, in HABS there is a further 
need to support revocation of authorities on the delegation paths, which is not provided by existing HABS 
constructions. To counter this issue, [REF-165] proposes a novel Verifier-Local Revocation (VLR) 
property which extends the original HABS security model of [REF-163] to address revocation and develop 
a new attribute delegation technique with appropriate VLR mechanism for HABS. Moreover, their scheme 
is the first to be based on lattices, thought to offer post-quantum security. It may be of interest to explore 
post-quantum security of attribute-based VPs in the context of REWIRE. 
 
Looking at the current ways to implement such schemes, we highlight document [REF-166] which is a 
draft with respect to linked data cryptographic signature suite registries. The contributors summarise 
several suites and their corresponding verification methods currently known to the community. 
Specification [REF-166] was published by the credential community group, however, it is important to note 
that the specification is not yet a standard regarding W3C. Of particular interest is the BBS+ Signature 
2020 Suite. Recall, BBS digital signatures schemes are utilised for short group signatures supporting 
beneficial properties such as evaluating multiple messages to producing a single output digital signature. 
This desirable property enables the possessor of a signature to generate proofs that selectively disclose 
subsets of the originally signed set of messages, whilst preserving the verifiable authenticity and integrity 
of the messages. Importantly, these proofs are said to be zero-knowledge as they do not reveal the 
underlying signature; instead, what they reveal is a proof of knowledge of the undisclosed signature.  
 
The aforementioned methodology will be followed in order to create a ZTO protocol in the context of 
REWIRE. The main entity on the edge device that is going to implement this logic in the ZTO agent, as 
part of the REWIRE facility layer.  
 
 

4.5.3.  Device state management  

4.5.3.1. Description and functional objective 

Enclave migration based on RISC-V is one of the innovations proposed for REWIRE. Enclave migration 
can be useful in a number of scenarios: maintenance of a device, risk situation or as a result from a 
previous attestation. It enables the system to securely migrate and send the state of an enclave running 
in an IoT device, to a remote IoT device, which will initialize a new enclave running the original application 
and restoring the original state.  
  
On a theoretical level, enclave migration can take place inside the same machine (machine A, enclaves 
A1 and A2), or between two machines (A and B) and enclaves (enclave A, enclave B). This latter case is 
based around the concept of state storage and remote initialization of an enclave such that it contains the 
original eapp (not sent) plus the original state. This chapter presents the second case since the first one 
is a simpler subset of it. In this case, the state of enclave A in machine A is securely migrated to a different 
enclave B in machine B, without service interruption. 
 

4.5.3.2. Component Workflows 

https://www.w3.org/TR/vc-data-model/#dfn-subjects
https://www.w3.org/TR/vc-data-model/#dfn-holders
https://www.w3.org/TR/vc-data-model/#dfn-verifiable-credentials
https://www.w3.org/TR/vc-data-model/#dfn-verifier
https://www.w3.org/TR/vc-data-model/#dfn-issuers
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Two main steps must sequentially happen, with some conditions:  
1. Establishment of a secure channel 

• After a certain component (e.g., the Attestation Agent of TEE A) triggers the enclave 
migration between TEE A and TEE B, the system must establish an ephemeral secure 
channel between the SMs of both machines. This is not available by default.  

• Assuming the SMs have a private key (delivered from the Root of Trust), and that they 
know the Public Key of the other SM, and that Public Key is certified by a trusted authority, 
they can agree on a private key using a Diffie-Hellman algorithm and establish that 
ephemeral secure channel. 

▪ A different approach would be for the SMs to have a private DAA, not necessarily 
the same as the private key delivered by the Root of Trust, and that is certified by 
a CA; and use this private DAA to authenticate them both during this process.  

• The Diffie-Hellman code can be run inside the Keystone SM 
2. State storage and migration 

• Once there is confirmation that the secure channel is established between SM A and SM 
B, enclave A encrypts the state with a key which will be named KMI (derived from the private 
SM A key) and stores that state. State may go to persistent memory.  

• After that, the state can be sent together with the encryption key using the secure channel, 
and then the other machine should be able to decrypt and restore the state.  

• When this is done, the application in the second machine can be run in enclave B, using 
the state/data that has been restored from enclave A. Note that the application itself 
(eappA) is not sent: other actor must inform machine B that eappA is the eapp to run in 
enclave B.  

  
It is important to note that some intelligence must actuate outside the boundaries of the SMs and enclaves 
involved in the process. This is the untrusted world must activate enclave migration if triggered by 
conditions that are external to the SMs and enclaves.  
  
In the description of this feature, the following elements are taken into account:  

- Policy Manager: this is an abstraction for any entity in the REWIRE cloud backend able to, as said, 
determine that enclave A must be migrated to enclave B. Not active in runtime and thus not 
included in the sequence diagram.  

- Attestation Agent A is, in this case, the component that triggers enclave migration. However, other 
components could in principle trigger the migration process (in the case of e.g., maintenance). It 
belongs in the untrusted world.  

- Device State Management Agent is the component that internally (to each TEE) orchestrates the 
necessary operations for enclave migration.  

- Enclave A, Security Monitor A, Enclave B and Security Monitor B are self-explanatory. 
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Figure 4.21: Device state management workflow 

 

4.5.4. Secure Upgrade  

Secure Upgrade based on RISC-V is another of the novel functions proposed for the REWIRE TEE. This 
function is one of the core elements of the full SW/FW update feature of the REWIRE system. As a core 
element of it, it requires that several pre-requisites are fulfilled in advance:  

• The Secure device on-boarding has been successful, and a master key has been received by the 
Security Monitor from the device’s RoT.  

• The Software and Firmware Update Distribution has been successful, and the software update 
has been decrypted.  

• The Firmware & Software Validation has been successful.  

• The software update must be converted to an eapp. 

• The software update is already available in (local) memory 

• It is assumed that a single enclave (Enclave A) is running the old SW  

• The Security Monitor, through the Policy Manager (design time), knows which enclave (Enclave 
A) is running the old software.  

 

4.5.4.1. Description and functional objective 
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The primary objective of Secure Upgrade is securely updating the old software that is being currently run 
for a new, superior version of the software, without loss of state data.  
 

4.5.4.2. Component Workflows 

Secure Upgrade shall take place inside the same machine (machine A, enclaves A and B). It revolves 
around the concepts of (1) (original) enclave state storage and (2) initialization of a new enclave such that 
it contains the new eapp plus the original state.  
  
Sequentially, it follows the next steps:  

• The SW/FW Update Agent instructs the Security Monitor to start the Secure Upgrade procedure.  

• The Security Monitor (SM) verifies one or more characteristics of the new software (e.g., 
versioning) against the State Dynamic Map. Note that this has not been included in the sequence 
diagram for the sake of simplicity. This could also involve checking an external whitelist database 
of software versions.  

• The SM instructs Enclave A to encrypt and seal (store) its state with key Ksu.  

• Ksu is a derivation of the master private key (Master Secret) and it is created on demand. It is not 
stored. It could be computed as H(MS, ID, context) where H is a hash function, MS is the Master 
Secret, ID is the public key of the enclave developer, and context would just be a string like 
“upgrading” – as used to derive different keys for different contexts. 

• Overall, we need a sealing key that should be available to both the old and the new enclaves. 
Hence all enclaves that are signed by the same developer and carry the same developer public 
key could have access to this sealing key. Having two enclaves that can access the same sealing 
key, allows to transfer state via the sealing interface. That is, one enclave seals state and the other 
one unseals it. This is similar to the Intel SGX procedure when sealing keys are obtained with the 
MRSIGNER option. 

• Enclave A stops all threads, encrypts and seals its state. Enclave A then calls back to Security 
Monitor.  

• The SM destroys Enclave A. Memory is freed. Then updates the State Dynamic Map with an in-
progress status and calls back to the SW/FW Agent.  

• The SW/FW Agent allocates the new EPM, and initializes it with the enclave’s page table (PT), 
the runtime (RT), and the eapp for the new SW update – then instructs the SM to protect that 
Enclave B. 

• The SM protects Enclave B and instructs it to use Ksu to decrypt and restore the original state.  

• Enclave B decrypts and restores state, then calls back to the SM.  

• The SM, after verifying and measuring the new Enclave B, updates the State Dynamic Map and 
calls back to the SW/FW Agent with a success value. 
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Figure 4.22: Secure Upgrade workflow 

 

4.5.5. Attestation Agent  

 

4.5.5.1. Description and functional objective 

 
Operational assurance of IoT devices is of paramount importance in order to ensure their trustworthy 
operation in the context of collaborative infrastructures. Attestation is a security service in order to validate 
the integrity of an entity such as an IoT device or an installed software. Static attestation mechanisms 
enable the detection of manipulation of a device’s static memory content (e.g., the program code or 
program’s configurations). Runtime attestation mechanisms provide information about a device’s runtime 
behaviour, allowing the verifier to detect also dynamic attacks (e.g., code-reuse attacks). REWIRE utilizes 
runtime attestation for verification of edge devices’ operational assurance. 
 
 

4.5.5.2. Component Workflows 

In particular, REWIRE offers efficient attestation mechanisms covering all phases of a device’s 
execution; from the trusted boot and integrity measurement of an IoT device to the runtime behavioural 
attestation of safety critical components of a system providing strong guarantees on the correctness of 
the control- and information-flow properties, which will directly supported by the underline trusted 
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component (e.g., the REWIRE’s TEE).   
  
REWIRE’s layered attestation allows attestation to build the global picture of a system’s integrity from the 
bottom up, one layer at a time. Such an approach enables REWIRE to provide a more nuanced view of 
the device state as it can isolate integrity and operational correctness violations identifying exactly which 
portions of the system are trusted or not. The REWIRE Attestation engages a gamut of cryptographic 
operations which rely on the secure management of cryptographic keys. Thus, it becomes clear that we 
need to adopt the best practices in order to manage this wide variety of keys in a secure manner. One 
core feature of the REWIRE Attestation mechanism is the adoption of key restriction usage policies 
in order to bind the usage of the key to a device state that is known to be correct and trustworthy, ensuring 
that the REWIRE cryptographic enablers are not used by a device that has been compromised by a 
malicious party. In parallel, the adoption of key restriction usage policies minimizes the attack surface on 
the target device. The following sequence diagram illustrated the interactions that will take place in the 
context of the attestation agent. 
 
 

 
Figure 4.23: REWIRE Attestation Agent 

 

4.5.6.  Policy Enforcement  

Policy Enforcement is a core functionality of the REWIRE device, as part of the Policy Orchestrator. More 
specifically, the Policy Orchestrator is the entry point that receives enforceable policies (generated during 
the design time phase or the security administrator during runtime) and decides in which agent will be 
enforced/applied. Thus, the Policy Orchestrator is responsible to run the necessary piece of logic for 
enabling and retrieving the necessary information by the agents. In other words, the functionality of Policy 
Orchestrator is twofold: a) it manages and orchestrates the received policies for triggering the appropriate 
agent and b) facilitates the communication between the agents and the backend infrastructure through 
the Secure Oracles. 
 
 

4.5.7. Key management  

 
REWIRE will offer a key management mechanism in order to manage the cryptographic keys that will be 
necessary for supporting the secure and trustworthy execution of all the envisioned functionalities of 
REWIRE. For instance, the SW/FW update process, the enclave migration for the device state 
management, the ZTO, are some examples of services that capitalise on the cryptographic keys. Hence, 
REWIRE will offer an holistic key management mechanisms for the generations and protection of 
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cryptographic keys. Different keys will be used in order to support the various crypto-based services. The 
key management mechanism will be using a key hierarchy where keys will be created to serve different 
purposes. The key management mechanism will be an integral component of the security monitor of the 
TEE. In D2.1 we elaborate on our initial efforts on defining  the type of keys that the REWIRE services 
are going to need, but this work will be completed in the context of WP3 and WP4.  
 
The hardware based long-term device ID key and the authenticated encryption (AE) symmetric key (for 
the SW/FW update)  are created in the device setup and distributed to the KMS in the security monitor 
(SM). Note, the AE symmetric key is onboarded on the device during the manufacturing process as 
explained in Section 4.3.2. The asymmetric attestation key pair is generated from the HW RoT, using 
randomness, and is sent to the SM and ZTO agent. The SM key-pair is bound to the SM identity and 
trusted HW component root key. This is essential for processes relevant to the key hierarchy, such as 
data sealing, not depicted on the diagram. Data sealing allows an enclave to derive (using KDF) a key for 
encryption to be able to save data in untrusted, non-volatile memory outside of the enclave. The SM has 
a key management component whereby the master/root keys of key hierarchies are used to establish 
children keys (encryption, signing etc.) using a key derivation function (See Chapter 8). The ability to 
generate keys in this manner is fundamental to the numerous cryptographic protocols and operations in 
the REWIRE network, such as runtime attestation, to bind the usage of the key to a device state in line 
with the key restriction usage policies created in the ZTO process.  
 

In the context of the ZTO process, the device ID key is sent to the agent, and onboarding proceeds (see 
Section 4.4.7). Once the device has been authenticated and onboarded, the SW Update key is activated 
and the DAA Key is created. Note, a separate key hierarchy is created for the SW update key to provide 
segmentation from the key hierarchy of the DAA key and attribute-based signature keys. During the 
onboarding phase, the user seeks to authenticate the device to the MUD verifier in the REWIRE network. 
This is achieved by the device creating Verifiable Presentations (VPs) of credentials without disclosing 
the device identity, using zero-knowledge attribute-based signatures or attribute-based DAA. In either 
case, attributes will be depicted as keys in an access tree structure, generating a matrix of attributes, 
based on which attribute-based signatures (ABS) are created. Attributes in a verifiable credential (VC) 
can represent a row in the matrix, and a predicate/operation over these attribute keys, or a subset of 
attribute keys in the row, can be viewed as an accumulator producing a signature. Note, the attribute keys 
do not necessarily need protecting under a key restriction usage policy, however, the device DAA key 
does need protection since it will be used for anonymously signing the ABS’s to create a blinded VP. For 
the device to be able to use the DAA Key, it will have to check the correctness of the key restriction usage 
policy set for using it. The policy orchestrator feeds the VPs with security claims, and the key restriction 
usage policies, to the secure oracles. During runtime, the user can selectively disclose their attributes by 
utilizing decentralized ABAC which REWIRE supports. Specifically, the collected data gets fed to the 
blockchain infrastructure for off-chain storage in a digital wallet supporting the SSI paradigm, components 
of which are DIDs and VCs. Cryptographic keying material is also protected in the BC wallet in a KMS. 
 
The abovementioned key management and key derivation approaches reflect the current state of the 
developments of REWIRE. We need to highlight that these approaches may be revised in the context of 
the technical deliverables of the projects, as new challenges will arise during our developments.  
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Figure 4.24: REWIRE Key Management 
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Chapter 5 

5. REWIRE Framework Requirements 
 
This is a core chapter of deliverable D2.1 since it focuses on the REWIRE framework requirements. More 
precisely, the requirements are divided to functional, security, operational assurance, formal verification, 
and RoT requirements. The requirements were gathered on the methodology described in Chapter 3. 

5.1 Functional Specifications and Requirements 

ID FR.FR.1 (Mandatory) 

Title 
Dynamic awareness of potential vulnerabilities and threats and complete 
overview of the deployed environment 

Actors/Components 
Involved 

Security Administrator, Risk Assessment, AI-based Threat Intelligence, SW/FW 
Validation Component, Attestation mechanisms (Attestation Agent, REWIRE 
Tracer, Integrity Verification), Secure Oracles, Blockchain infrastructure.  

Description 

Background: The REWIRE framework should be able to collect and report 
information regarding vulnerable assets/devices or assets being under attack. In 
order to be able to assess the risks and the security posture of a highly distributed 
environment with several interconnected heterogenous devices, the various 
underlying threats and vulnerabilities, there is a need to identify risks so that to 
proceed with the enforcement of new operational and security policies for regulating 
the operation of the environment or even to proceed to updates on the HW and SW 
co-design on systems (following the design-time phase of REWIRE).  

Description: REWIRE needs to provide to the administrator the necessary tools to 
perform dynamic and (semi-)automated risk assessment. To do so, REWIRE needs 
to take advantage of proper visualization technologies which can offer a graphical 
representation of the monitored environment and ease the administrator to keep 
track of the existing interconnections among the numerous and heterogenous 
devices. When new vulnerabilities or threats are detected by the REWIRE artifacts 
(e.g., AI-based Threat Intelligence) or reported by the community for known assets, 
this graphical representation will assist the administrator to evaluate how the 
interdependencies of the assets could trigger cascading effects and increase the 
cyber risk for critical services. REWIRE needs to provide solutions which are aligned 
with the good practices and standards to enable the dynamic risk assessment of IoT 
environments and safety critical applications. 

That is, based on evidence, the risk assessment tool will perform an informed 
analysis over the IoT deployment being monitored, and will inform the system 
administrator about its security posture. This functional requirement could enhance 
the runtime monitoring capabilities of REWIRE and assist the administrator to take 
informed decisions for mitigation actions or attestation policies. The outcome of the 
risk assessment process is a risk report which will provide an overview to the 
administrator in order to take informed decisions and trigger actions. 

Remarks:  

− Risk assessment needs to provide an output and highlight the identified 
risks and feed the HW/SW co-design formal verification processes. 

− The term dynamicity refers to the ability of the framework to acquire and 
process events from a monitored topology in near real-time manner.  

Technology enablers 
Common Vulnerability Scoring System (CVSS), Common Attack Pattern 
Enumeration and Classification (CAPEC), MITRE ATT&CK, Graph databases (e.g., 
Neo4j) 

Connected To Other • FR.FR.16: AI-assisted misbehaviour detection: The risk assessment 
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Requirements methodology and tool of REWIRE needs to take inputs on the detection of 
security or misbehaviour incidents. 

Impactful Attacks 
and Mitigation 

Measures 

All attack vectors should be able to be represented in the risk assessment 
environment of REWIRE. Given the risk assessment output, the administrator 
should be in position to take informed decision for mitigation actions.  

KPIs 

• Elapsed time to complete a risk assessment execution for different specific 
scenarios. 

• Scalability of the risk assessment engine w.r.t the number of 
assets/vulnerabilities/threats engaged. 

 

ID FR.FR.2 (Mandatory) 

Title Secure remote asset management and reconfiguration effectiveness 

Actors/Components 
Involved 

Security Administrator, Blockchain infrastructure, SW/FW Validation Component, 
SW/FW Distribution Service, Secure Oracles, SW/FW update (on the device), SC-
Resistant AE 

Description 

Background: The capability to remotely update IoT devices is a critical aspect of 
ensuring the long-term security of these assets. Devices should be able to receive 
SW/FW updates and configuration data in a cryptographically secure manner, 
utilising crypto protocols which are resistant against attacks.  

End-devices in Smart Cities scenarios are deployed in vast geographical areas and 
operate without human supervision. Furthermore, they even lack keypads or 
displays. For these reasons, to ensure the right operation of the network, remote 
management and reconfiguration are essential. Not only these must be 
implemented, but also, they require a high level of security since these devices might 
manage critical assets — fire detection and suppression systems in public areas, 
access control to public premises, waste management, plague control, street 
lightning, traffic control.  

Currently most automotive SW updates are performed in an authorized dealership 
for SW updates regarding both new functionalities and bug fixes. At the same time, 
new automotive technologies in the field of autonomous driving and V2X 
connectivity require constant SW updates throughout the product lifecycle as well 
as day-to-day operation. Therefore, it emerges as a necessity to remotely perform 
SW updates (OTA) and this needs to happen in a secure manner as it can affect 
road and traffic safety.  
 
The same requirement for secure remote asset management and reconfiguration 
effectiveness applies also for the Spacecrafts applications and services. In fact, 
updating the SW/FW of a satellite which is in orbit around Earth is a rather 
challenging task, as the update procedure takes place in segments, utilising multiple 
ground stations communicating with satellites for only limited time frames. Secure 
and reliable SW/FW update processes are crucial of the domain.  
 
Description: REWIRE must allow the Security Administrator (e.g., network owner, 
manufacturer / supplier) of the required tools to perform remote distribution of FW 
or SW data — i.e., selecting a FW binary or SW configuration files and the target 
devices from a list that must receive this information in a timely manner. Additionally, 
FW or SW data must be validated before the deployment. There is a risk of attackers 
triggering rogue software updates — e.g., malware or tampered FW or even 
legitimate developers may unintentionally create vulnerable SW/FW binaries. To do 
so, REWIRE will ensure security during SW/FW remote transmission and validation 
upon reception capitalizing on openly standardized protocols and data formats to 
guarantee the seamless integration of several types of devices within the domain. 

In Smart City scenarios, due to their heterogeneous nature, target devices will 
implement resource constrained MCUs that encourage employing lightweight 
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security and communication protocols and mechanisms.  

In contrast, for vehicular scenarios, due to the typically high processing power of 
ADAS ECUs, more computational resources will be available, and thus, stronger 
security protocols can be considered. This can significantly improve the secure 
transmission of SW packages to the targeted vehicle(s), preserving security and 
integrity of the SW update package. A generalized SW update or bug fix can be 
globally deployed on control units of all cars of a given brand or model, simplifying 
the update procedure, and reducing the attack surface. Therefore, REWIRE can 
provide the OEM / Authorized supplier with the ability to select a specific SW 
package and automatically roll it out to specific vehicles or the whole OEM fleet (in 
case of a general update). Hence, remote SW/FW update will facilitate proper 
operation of autonomous driving and V2X connectivity (e.g., ensure that the vehicle 
is always up to date regarding HD road maps). 

In the context of smart satellites, secure SW and FW update processes will be 
developed in order to ensure that not only the SW/FW update can take place utilising 
multiple ground stations, but also the update operation will be fail-safe and will 
ensure that, even in the case of an update fault, the satellite will remain operational 
as rollback mechanisms will ensure that the system will always be in an operational 
condition. 

This SW/FW must be carried out from the source to the destination privately and 
without tampers through the whole infrastructure. In addition, in the case of an 
already successful attack, a SW/FW update will offer a chance to regain full or partial 
control of the already compromised, safety relevant or not, components of the 
vehicle’s system. Moreover, OTA updates can immediately deploy SW 
enhancements or new functionalities (e.g., improved perception algorithms with 
edge-case training), allowing continuous improvement throughout the product 
lifecycle. However, due to the nature of massive deployments, this operation should 
also enable the transmission of the SW/FW configuration data to several devices 
concurrently. Since this is not scalable in terms of time, computational resources or 
radio bandwidth, multi-cast secure communication technologies and methods 
should be available instead. Finally, after a successful or failed software update 
procedure takes place, this should be reported back to the administrator through the 
secure remote asset management tools. This information should be confidential. 

Remarks:  

− The tools must receive FW or SW configuration data package from an 
authorized user as input, which will be in turn transmitted as an output 
through the infrastructure to the devices/vehicles/satellites. 

− The SW/FW package should meet the REWIRE framework security 
standards. 

− Despite the “one-to-one” nature of automotive SW/FW updates that will be 
considered on REWIRE, one-to-many case can optionally also be taken 
into consideration, for the case of Smart Cities scenarios or updating 
entire (or large groups of) vehicle OEM fleets. Therefore, both one-to-one 
and one-to-many scenarios can fall under security clearance. 

− Devices with heterogeneous computational or bandwidth requirements 
must be supported — openly standardized protocols and data formats. 

− A report of the success or failure of the procedure must be presented to the 
administrator through the remote asset management tools. This information 
should be confidential. 

− User should be informed whether the SW/FW update has been successfully 
deployed. This information should be confidential. 

Technology enablers Hyperledger Fabric, Keystone TEE 

Connected To Other 
Requirements 

• FR.FR.5: SW/FW unpacking and vulnerability analysis: The SW/FW 
binaries need to be validated and be sanitised from known vulnerabilities 
before the SW/FW update process takes place. 

• FR.FR.1: Dynamic awareness on potential vulnerabilities and threats 
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and complete overview of the deployed environment: The Risk 
Assessment needs to consider potential identified vulnerabilities and 
threats. 

Impactful Attacks 
and Mitigation 

Measures 

SW/FW updates and configurations should be performed in a cryptographically 
secure manner utilising crypto protocols which are resistant to side-channel for 
recovering authentication keys. This requirement itself is necessary as a mitigation 
measure. 

KPIs 

• Computational load for security mechanic, mean time for update 
completion, overall network requirements, time for mitigation deployment 

• Timeliness of SW/FW Distribution: Measure the time it takes for the SW/FW 
data to be successfully transmitted and received by the target devices or 
vehicles. This KPI ensures that updates are delivered in a timely manner to 
ensure the continuous operation of the network. 

• Validation Success Rate: Measure the percentage of successfully validated 
SW/FW data upon reception. This KPI assesses the effectiveness of the 
validation process, ensuring that only trusted and authentic updates are 
deployed, mitigating the risk of malware or tampered firmware. 

• Security Protocol Overhead: Measure the impact of security protocols on 
the communication overhead. This KPI assesses the efficiency of 
lightweight security protocols in resource-constrained devices in terms of 
bandwidth employed. 

• Efficiency and Success Rate: Measure the efficiency of multicast 
technologies in transmitting SW/FW data to multiple devices concurrently. 
In addition, the success rate of one-to-many SW/FW updates, especially in 
Smart City scenarios or updating entire fleets of vehicles. This KPI 
evaluates the efficiency and scalability of multicast communication and 
mass updates. 

 

ID FR.FR.3 (Mandatory) 

Title Device status auditing 

Actors/Components 
Involved 

Blockchain Infrastructure, Secure Oracles, Off-chain Data Storage, Attestation 
agent,  

Description 

Background: The need for data auditing is not new, while there is an exhaustive 
literature with works for blockchain-based data auditing for different domains and 
applications. Regular audits can foster the identification of potential security risks 
and device status auditing can assist to maintain a high level of security. Thus, the 
continuous and automated auditing, including the device statuses, in a secure and 
trusted way to support the demanding business needs is a necessary REWIRE 
feature.  

Description: Blockchain technology is necessary to maintain the collected 
evidence, while smart oracles can be leveraged to support data collection (e.g., 
device statuses). Prior to any action, there is a need for established authentication 
between the device and the oracle. The smart oracles can filter, format, and perform 
a veracity check on the submitted data before storing them on-chain. On top of that, 
oracles are necessary to be TEE-enabled in order to overcome the data veracity 
issue and assure that the audit mechanism is trustworthy itself. Thus, all the stored 
information can be used as traceable and non-tampered evidence.  

Device status auditing is an essential aspect of the REWIRE project as it enables 
continuous monitoring of the security status of IoT devices. This function helps in 
identifying potential vulnerabilities in the system, thus reducing the risk of cyber-
attacks. More specifically, the "health" status of a device or critical system should 
be auditable (also for certification purposes). Thus, results from the attestation of 
devices or from the SW/FW validation process should be available to other actors 
through the blockchain infrastructure. Collected data should reflect the 
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trustworthiness of the systems. For example, when setting up communication with 
another device or a device wants to enter the overall infrastructure network (secure 
device onboarding), the status of that device before proceeding should be in a 
trusted state. By regularly auditing the device status, the project can ensure that the 
hardware and software components are functioning as intended, and no malicious 
activity is occurring. This can also result in a form of certification, demonstrating 
compliance with industry standards and regulations. 

Remarks: 

− The decentralised smart oracles enable data collection through smart 
contracts in a secure and trustworthy manner so that the security audit itself 
is trustworthy. 

− The oracles will be supported and embedded with a TEE so that it can run 
secure operations within a trusted and safe environment. 

Technology enablers Hyperledger Fabric, Keystone 

Connected To Other 
Requirements 

• FR.FR.7: Zero Touch device Onboarding: A device status auditing 
mechanism mandates secure device onboarding. 

• FR.FR.12: Trust Aware Continuous Authentication and Authorisation: 
A secure and trusted device status auditing mechanism mandates a 
continuous authentication and authorisation of the device. 

• FR.FR.14: Data veracity management: A core research challenge that 
needs to be addressed is the veracity of the collected data since it is 
necessary for valid auditing. 

• FR.FR.16: AI-assisted misbehaviour detection: The AI-misbehaviour 
detection mechanism can be a potential source of data that reflect the 
security level of a device. Such kinds of data are transmitted through the 
oracles. 

• FR.FR.19: Device provenance and device status: Device provenance 
and status is necessary for the corresponding auditing. 

Impactful Attacks 
and Mitigation 

Measures 

Device tampering, malware attacks and insider attacks should be able to be 
identified during the device status auditing of REWIRE. Implementing a combination 
of hardware and software-based security mechanisms, using secure communication 
protocols, and conducting regular device inspections and scans are crucial to 
mitigate the aforementioned attacks. 

KPIs 
• Block time creation 

• Average transaction time 

 

ID FR.FR.4 (Mandatory) 

Title Application and security data event sharing  

Actors/Components 

Involved 

Blockchain Infrastructure, Secure Oracles, Off-chain Data Storage 

Description 

Background: Sharing application and security events enables quick and crucial 
decision making about the security level and potential countermeasures against 
cyberattacks. However, the current event sharing solutions do not allow easy 
communication and knowledge sharing among detection systems exploiting AI-
assisted detection techniques. This type of data is highly sensitive and must be 
protected. Thus, both confidentiality and integrity are mandatory requirements. 
However, due to the dynamic nature and the amount of event data a centralized way 
is not an option, while decentralised solutions (e.g., Blockchain) are not always 
scalable. 

Description: REWIRE framework should be able to identify misbehaviour of 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 77 of 177 REWIRE D2.1 

  

      

devices and report threat intelligence data generated, in the form of events. Data 
generated in the context of threat Intelligence actions (e.g., attestation, SW/FW 
validation, AI-based misbehaviour detection) shall be made available to the 
administrator of the monitored environment, (acting as the security service 
operator), to be able to dynamically assess its security posture and take mitigation 
actions. In the context of REWIRE, these application and security event data are 
stored on a Blockchain platform for security, transparency, immutability, and 
decentralization qualities. However, application and security data may be of high 
volume and/or velocity and stem from different layers of a system architecture 
(application, network, etc.). That is, a Blockchain infrastructure needs to operate in 
tandem with external (off-chain) data storage solutions to maintain bulky data and 
have a synchronised operation for data indexing with the Blockchain per se.  

On top of that, this functional requirement could enhance the runtime monitoring 
capabilities of REWIRE by a) assisting the administrator to take informed decisions 
on misbehaving devices and act, b) sharing of threat Intelligence data within 
REWIRE distributed environment will allow other entities (e.g., devices) operating in 
the same use case to understand the security status of other devices they need to 
interact with. 

Remarks:  

− The AI-based misbehaviour detection needs to provide an output that will 
enable the system administrator to promptly identify threats/attacks and 
utilise the results for risk assessment and further mitigation/corrective 
actions.  

− Blockchain provides secure, transparent, immutable, and decentralised 
storage for threat intelligence data; nevertheless, due to high data volume 
and velocity, a combination of blockchain and off-chain storage solutions is 
required for efficient data management and synchronisation. 

Technology enablers Hyperledger Fabric, AI-assisted detection, Secure Oracles 

Connected To Other 
Requirements 

• FR.FR1: Dynamic awareness on potential vulnerabilities and threats 
and complete overview of the deployed environment: Application and 
security data events needs be considered on the risk assessment 
methodology of REWIRE. 

Impactful Attacks 
and Mitigation 

Measures 

Sibyl, DDoS and insider attacks should be able to be identified as security events 
and shared through the blockchain infrastructure. Thus, proper mitigation action can 
be applied upon such an event is detected. 

KPIs 
• Average Processing time 

• Total latency time 

 

ID FR.FR.5 (Mandatory) 

Title SW/FW unpacking and vulnerability analysis 

Actors/Components 
Involved 

SW/FW Validation Component 

Description 

Background: SW//FW verification assesses whether a product is built correctly. 
Thus, a FW/FW shall be validated before the deployment on a device, either during 
the design phase or during the runtime phase of the framework and before the over 
the air SW/FW update. Detecting SW/FW vulnerabilities before the deployment 
avoids unnecessary risks during runtime and is of paramount importance in 
REWIRE. 

Description: In the context of REWIRE, the validation is part of an end-to-end chain 
covering device integrity and trust. Guided fuzzing and symbolic execution 
techniques are combined to verify whether SW/FW contains any vulnerabilities. In 
REWIRE, using a combination of static symbolic execution and fuzzing this analysis 
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aims to find crashing inputs for the targeted FW/SW. The SW/FW can be emulated 
on a system dedicated to the software analysis, in order to easily scale it to many 
different devices and firmware versions. Through the use of root cause analysis, the 
information on these crashing inputs can be used to determine the existence of bugs 
in the firmware. When feasible, these bugs will be analysed further to determine 
whether they constitute a vulnerability. The information on identified vulnerabilities 
can then be communicated to other components in the REWIRE project, such as 
the risk assessment tool for increasing the awareness of the security operator, or, 
in the context of the Design-time phase of the REWIRE framework, this information 
can be given as input to the formal verification tools in order to analyse the overall 
security of the HW/SW co-design.  

Remarks:  

− The SW/FW package must be accessible by a third party, i.e., it cannot be 
encrypted or packaged using a proprietary format that is not publicly known. 

− The firmware has to be based on a Unix-like operating system and compiled 
for a RISC-V architecture. 

− The analysis combines dynamic and static analysis techniques to combine 
their strengths and compensate for their weaknesses 

Technology enablers Fuzzing, Symbolic Execution, Emulation, Root cause analysis 

Connected To Other 
Requirements 

• FR.FR.2: Secure remote asset management and reconfiguration 
effectiveness: FR.FR.2 refers to the need for over the air updates. Thus, 
before any deployment of a new FW/SW, the SW/FW unpacking, and 
vulnerability analysis needs to take place to guarantee that the SW/FW is 
vulnerability-free.  

• FR.FR.1 Dynamic awareness on potential vulnerabilities and threats 
and complete overview of the deployed environment: The Risk 
Assessment needs to take as an input the vulnerability analysis performed 
during SW/FW unpacking. 

Impactful Attacks 
and Mitigation 

Measures 

Attacks resulting from software-related vulnerabilities such as buffer overflows, use-
after-free vulnerabilities, integer overflows, etc. should be able to be identified during 
SW/FW unpacking at runtime. These attacks can be mitigated by denying access to 
the affected service(s) until such time as the vendor has deployed a patch fixing the 
vulnerability. 

KPIs 
• Detection accuracy 

• Speed of detection 

 

ID FR.FR.6 (Mandatory) 

Title Efficient device state monitoring 

Actors/Components 
Involved 

REWIRE Tracer, SW/FW Validation Component (adding specific hooks for the 
introspection of applications) 

Description 

Background: The increasing threat surface of IoT devices mandates to consider 
the underline security risks and to ensure that those devices are secure and trusted. 
REWIRE mechanisms should be able to identify critical states of a systems' 
operation, (e.g., specific signals in ECUs) in order to check for the correct 
operational behaviour of devices. 

Description: In the context of REWIRE, the addition of monitoring hooks will be 
performed using the SW/FW validation component. SW/FW can be unpacked, 
resulting in at least a file system. The software contained in this file system can be 
disassembled and lifted to an Intermediate Language, on which it is more feasible 
to reason about the software and adjust it. In this representation, monitoring hooks 
will be added, after which it can be compiled back to its original architecture. The 
software in the unpacked firmware will be overwritten using this modified version, 
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after it will be repacked. This modified version of the firmware can then be installed 
on a device, resulting in live monitoring of its behaviour. Note that installing modified 
SW/FW is not possible on a device where creating legitimate firmware is 
intentionally made more challenging, such as with proprietary packaging formats, 
encrypted firmware, or signed firmware. After the deployment of a SW/FW, the 
injected monitoring hooks will enable the REWIRE tracer to identify efficiently critical 
states of a systems' operation, in order to check for the correct operational behaviour 
of devices in the context of the REWIRE attestation schemes.  

Remarks: 

− The firmware package must be accessible by a third party, i.e., it cannot be 
encrypted or packaged using a proprietary format that is not publicly known. 

− Monitoring hooks are applied statically, meaning the firmware image itself 
is changed. 

Technology enablers Disassembling, Lifting, Compilation, (Un)packing of firmware 

Connected To Other 
Requirements 

• FR.FR.3: Device status auditing: REWIRE mechanisms should be able to 
identify critical devices' statuses for checking for the correct operational 
behaviour of devices. 

• FR.FR.18: Secure Measurement and Attribute Extraction: REWIRE 
measurements are necessary checking the device state. 

Impactful Attacks 
and Mitigation 

Measures 

SW/FW attacks should be able to be identified during monitoring. The increasing 
threat surface of IoT devices mandates the IoT devices’ monitoring to mitigate this 
surface. 

KPIs • Percentage of firmware that can be successfully monitored. 

 

ID FR.FR.7 (Mandatory) 

Title Zero Touch device Onboarding 

Actors/Components 
Involved 

Keystone TEE, Blockchain Infrastructure, Secure Oracles, MUD Profile Server, 
Privacy CA, Domain Manager, Attestation Agent 

Description 

Background: Faced with the rapid increase in IoT inter-connected devices and the 
high demand for new services, the management of such devices is getting complex. 
These devices are subject to an expanding list of attacks that exploit both software 
vulnerabilities and design choices, highlighting the importance of management 
cryptographic keys. In addition, traditional onboarding approaches cannot keep up 
with rapidly evolving application requirements. The limitations of traditional 
onboarding models, such as security and time-consuming manual steps, especially 
in the IoT domain led towards developing zero-touch onboarding mechanisms (also 
known as zero touch provisioning). 

Description: REWIRE needs an efficient and scalable zero-touch onboarding 
solution to configure the IoT devices onto a network as well as a minimized attack 
surface. Also, an access control mechanism is needed to assist in the onboarding 
and managing of devices into the network ensuring secure (authenticated) 
enrolment and consistent standardisation. More specifically, in REWIRE an 
Attribute-based Access Control (ABAC) along with the trust-related attributes in the 
form of VPs is considered a natural fit to adopt. The cryptographic key used to 
generate the VP is held in the TEE (utilising the REWIRE key management 
mechanisms), with key usage policies restricting its use, resulting in control over 
whether the device can get access to the network, given that it exhibits specific 
attributes advocating its operational correctness.  

Also, a proposed solution that will be investigated further in REWIRE is the 
authentication protocol using DAA (instead of “group” keys to preserve the privacy 
of authenticators). Recall, DAA is a cryptographic scheme used to ensure security 
and privacy guarantees and it has been adopted by TGC TPM2.0 for Elliptic Curve 
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based DAA (ECDAA). REWIRE will focus on DAA with attributes (DAA-A) protocol, 
in which the platform can select which attributes (from VPs) are shown/hidden to the 
verifier. The authenticity of the hidden attributes will be proved by a zero-knowledge 
protocol and usefully DAA-A provides user-controlled linkability. 

Remarks:  

− Currently, the DAA protocol is not included in the W3C description of VCs. 

− The two most prominent EC based DAA protocols for TPM 2.0 can be 

extended to DAA-A protocols. 

Technology enablers Keystone TEE, Hyperledger Fabric, Verifiable Presentations, DAA, ABAC 

Connected To Other 
Requirements 

• FR.FR.25: Provably secure crypto protocols and algorithms: All 
exchanges of sensitive data such as access control and DAA solutions 
should be protected through cryptographic means. 

• FR.FR.22: Policy-based device state configuration: During onboarding, 
policies regarding the device state are necessary to fulfil the security 
requirement.  

• FR.FR.9: Dynamic Credential Management: Dynamic credential 
management is necessary for the authorisation during onboarding.  

• FR.FR.11: Flexible and reliable key management: Key management is 
necessary for providing the necessary crypto primitives to perform the 
secure onboarding solution and the management of the cryptographic keys. 

• FR.FR.17: Common Trusted Computing Base: A common TCB is 
necessary to be adopted in order to fulfil the correct device state and hence 
the secure onboarding. 

• FR.FR.19: Device provenance and device status: Zero-touch onboarding 
is tightly coupled with the device provenance and status. 

Impactful Attacks 
and Mitigation 

Measures 

REWIRE’s zero touch provisioning is tolerant to Man-in-the-middle attacks as well 
as any device’s misconfiguration. In addition, REWIRE minimizes the attack surface 
by adopting key restriction usage policies, for allowing only devices at correct state 
to access their cryptographic keys, and DAA techniques, for privacy preservation of 
the device. 

KPIs 

• Elapsed time to complete a secure device onboarding. 

• Scalability of the device onboarding engine w.r.t the number of devices 
engaged. 

 

ID FR.FR.8 (Mandatory) 

Title Continuous tracking and auditability of patch management 

Actors/Components 
Involved 

Attestation Agent, Blockchain Infrastructure, SW/FW Validation Component 

Description 

Background: Due to scalability in massive deployments of IoT devices, the rollout 
of new SW/FW in a massive scale implies that several updates will take place in 
parallel. Network administrators require a human-friendly summary whenever a 
device finished successfully and securely the SW/FW update. Thus, continuous 
monitoring and patch management to increase cyber resilience in a secure way is 
of paramount importance in REWIRE. 

Description: In the context of REWIRE, devices need to be updated through a 
decentralized FUOTA process supported by a Blockchain Infrastructure, enabling 
on-demand security updates and patches. The process and the stages of the update 
will be logged in the Blockchain for auditing purposes. i.e., the validation result of 
the SW/FW, the signature of a SW/FW and the deployment, the SW/FW details. In 
a nutshell, the service that deploys the SW/FW update needs to verify that the 
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correct SW/FW is installed. Thus, the administrator should be able to track the 
SW/FW version installed in each device of its deployment. This is to ensure that 
REWIRE SW/FW is up-to-date, secure, and compliant with organizational policies, 
minimizing the risk of security breaches and maximizing at the same time system 
performance. 
On top of that the MUD standard from the Internet Engineering Task Force (IETF) 
will be also integrated as part of the process to configure/reconfigure the device in 
a secure way. Throughout its lifecycle, the device could be reconfigured to 
accommodate it to the changing threat landscape or requirements. Indeed, even the 
original manufacturer of the device may publish secure updates and accordingly 
modify the MUD file when necessary. 
Remarks: 

− SW/FW update will be triggered by the administrator based on the risk 
assessment output. 

 

Technology enablers MUD, Hyperledger Fabric 

Connected To Other 
Requirements 

• FR.FR.7: Zero Touch device Onboarding: Continuous tracking and 
auditability of patch management is crucial to achieve secure device 
onboarding. 

Impactful Attacks 
and Mitigation 

Measures 

REWIRE will not only provide a scalable mechanism for SW/FW update but will also 
ensure the correct execution of the patching mechanism itself in a secure and 
validated way. 

KPIs • Scalability of the patch management w.r.t the number of devices engaged. 

5.2 Security Requirements 

ID FR.FR.9 (Mandatory) 

Title Dynamic Credential Management  

Actors/Components 
Involved 

TEE, Attestation Agent, Blockchain Infrastructure. 

Description 

Background: Most existing credential management solutions require a centralized 
authority, either for attribute registration or credential verification. On the contrary, 
SSI enables entities to have ownership and control of their unique identity data 
without involving any third party. Currently, several works are exploring how to 
leverage blockchain to build SSI solutions, however, there is a lack of systematic 
architecture design for blockchain-based SSI systems. On top of that, current 
solutions are considered coarse-grained and may underperform or lack on data 
security (e.g., inadequate access control for credentials). In addition, highly 
distributed environments mandate the continuous authorisation and authentication 
of devices as well as secure device onboarding. Apart from the certificates used to 
verify the identity, certificates are also employed to verify the data provenance; a 
fact that adds further complexity to the system. This highlights the need in REWIRE 
of credential management (including revoking credentials in case of misbehaviors) 
in a dynamic way.  

Description: REWIRE will generate credentials for ensuring efficient, trustworthy, 
and secure communication between entities. Trust claims are made using VPs, 
while a selective disclosure of attributes will be used in order to minimise the 
information which needs to be exposed by the attributes to the verifying entities. 
More specifically, VPs are comprised of self-issued verifiable credentials and the 
key used to generate the VP is stored in the TC wallet. In the context of REWIRE, 
dynamic credentials are necessary as they can be generated on-demand, they are 
unique to a client (instead of static credentials which are pre-defined and shared) 
and they can change over time - a credential is associated with some policy 
encompassing the expiration date of when the credential needs destroying. 
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Crucial to security, the dynamic functionality also mitigates security risks if a 
credential is leaked. In this case, the credential is revoked and remediated. To do 
so, REWIRE necessitates dynamic attestation which is reflected in the dynamic 
nature of credentials. Last but not least, blockchain technology will be also used to 
facilitate sharing and auditing of verifiable credentials between entities that want to 
establish a trust relationship in a zero-trust manner. 

Remarks:  

- VPs issued by parties have the following advantages: interoperability (DIDs 
are “chain-agnostic” so they’re not permanently bound to a single BC); 
privacy (communicating parties can issue verifiable statements with the 
selective disclosure of attributes (DAA-A)); scalability (maintaining a subset 
of credentials off-chain can reduce the costs).  

- Credentials used for static attestation would only demonstrate the state of a 
device at the time of executable code, therefore, it would not provide a view 
of program behaviour at run-time. 

Technology enablers Keystone, Hyperledger Fabric 

Connected To Other 
Requirements 

• FR.FR.15: Confidentiality and integrity in data processing: Dynamic 
credential management is of paramount importance to ensure the data 
integrity and confidentiality during processing (e.g., by utilising ABE). 

• FR.FR.12: Trust Aware Continuous Authentication and Authorisation: 
The dynamic credential management is the baseline for device 
authentication and authorisation. 

• FR.FR.22: Policy-based device state configuration: Policies are based 
on the credentials of the device (e.g., attributes). 

• FR.FR.7: Zero Touch device Onboarding: Dynamic credential 
management is necessary to achieve zero touch device onboarding. 

• FR.FR.11: Flexible and reliable key management: Key management is 
the baseline for providing the necessary crypto primitives (e.g., digital 
signatures) for dynamic credential management. 

• FR.FR.19: Device provenance and device status: Device status 
corresponds to the overall device trustworthiness and is reflected in the 
device credentials (e.g., attributes).  

• FR.FR.17: Common Trusted Computing Base: A common TCB is the 
baseline as the trust anchor for credential management. 

• FR.FR.25: Provably secure crypto protocols and algorithms: Dynamic 
credential management is necessary to ensure the security of crypto 
protocols and algorithms. 

Impactful Attacks and 
Mitigation Measures 

Dynamic credential management prevents unauthorised devices to join the 
REWIRE network. Also, ABE protects data confidentiality and tampering. A revoking 
mechanism is crucial for excluding a device that misbehaves in the network. 

KPIs 

• Scalability of the credential management w.r.t the number of devices 
engaged and the number of attributes. 

• Signing and verification times for the VPs 

 

ID FR.FR.10 (Mandatory) 

Title Establishment of Secure and Authenticated Communication Channels  

Actors/Components 
Involved 

SW/FW Validation Component 

Description Background: The establishment of secure and authenticated channel is imperative 
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in REWIRE with the huge amount of heterogeneous interconnected devices. It is 
vital to protect the critical process of secure SW/FW update and protect this process 
by deploying secure and authenticated communication channels. 

Description: REWIRE will consider the critical character of SW updates, as they 
represent the first trust level of the system, and the fact that REWIRE devices often 
operate in unmonitored environment, the channel should be secure even in the 
presence of physical attackers capable of performing side-channel attacks. 
Moreover, being able to achieve this security level based on off-the-shelf 
components and without the need for the implementer to have a deep expertise in 
the field of side-channel countermeasures would allow swift and easy development 
of REWIRE devices. 

Towards this direction, REWIRE needs to design an Authenticated Encryption (AE) 
algorithm. This algorithm ensures both the confidentiality and the authenticity of 
exchanges between two actors sharing a symmetric key, meaning that attackers 
cannot obtain any information on the transmitted payload, nor modify this payload 
in any way without being detected. This algorithm should also meet a state-of-the-
art definition of security in adversarial physical conditions, such as CIML, precisely 
defining which security properties hold even if the attacker can monitor side-channel 
behaviour, tamper with nonces. The algorithm will be implemented as a leakage-
resilient mode of operation based on a standard block cipher such as the AES. In 
as much as possible, leakage resilience will be enforced by the mode of operation 
itself, without relying on side-channel countermeasures in the implementation of the 
underlying block cipher. 

Remarks:  

− The shared symmetric key used for SW updates must be a long-term key 
that can of course not be exchanged nor derived using methods that are not 
protected against side-channels, or these methods must be applied before 
deployment, in a secure environment. 

− The resulting cryptographic algorithm will consist in: (a) A SW 
implementation of the mode of operation, relying on a block cipher 
implemented in HW. (b) A characterization of the minimal expected 
properties of the HW block cipher, together with an example of off-the-shelf 
device meeting these requirements. 

Technology enablers AES 

Connected To Other 
Requirements 

• FR.FR.2: Secure remote asset management and reconfiguration 
effectiveness: The leakage-resilient mode of operation of the AES will 
support the SW/FW update processes of REWIRE 

• FR.FR.5: SW/FW unpacking and vulnerability analysis: The SW/FW 
unpacking, and vulnerability analysis should be performed in a secure and 
authenticated channel. 

Impactful Attacks 
and Mitigation 

Measures 

Potential impactful attacks are Man-in-the-middle (ΜΙΤΜ), cryptanalysis and side-
channel attacks. 

KPIs • Performance of establishment a secure and authenticated channel. 

 

ID FR.FR.11 (Mandatory/Optional) 

Title Flexible and reliable key management  

Actors/Components 
Involved 

Keystone TEE, Security-by-design Monitors, Attestation Agent 

Description 

Background: The key management process includes the secure generation, 
distribution, operation, storage and deletion of cryptographic keys, while the huge 
number of heterogeneous IoT devices, implies complex key management for 
different involved stakeholders, types of devices, and key lifecycles. Encrypting data 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 84 of 177 REWIRE D2.1 

  

      

to protect the confidentiality of the underlying information is a necessity. When it 
comes specifically to the SW update key, once the corresponding encryption 
(symmetric) key has been generated and used for its purpose, it must be stored for 
later use when the corresponding ciphertext needs to be decrypted. Storage of 
cryptographic keys is challenging, and solutions based on key hierarchies are 
necessary.  

Description: Intuitively, this design in the REWIRE architecture will organise 
cryptographic keys so that a root (master) key encrypts so-called leaf (children) 
keys, with the leaf keys encrypting the data in question. One difficulty is to ensure 
that the master key is simultaneously secure and accessible to decrypt leaf keys. 
Benefits to REWIRE of utilising a key hierarchy include minimising the amount of 
plaintext key material requiring protection and storage – plus, storing a master key 
alone restricts access to just one key. Moreover, key hierarchies enable 
segmentation of encrypted data. That is, data can be encrypted using independent 
cryptographic keys which minimises the impact of potential key corruption/loss. 

Furthermore, the REWIRE KMS manages keys in the Security Monitor since critical 
services, like key derivation, must run in isolation from other SW running on the 
same platform. The TEE must manage keys for remote attestation, sealing, 
migration etc.  

Remarks:  

− Key hierarchies can be comprised of several layers of keys, such that a 
parent key provides protection to their corresponding leaf keys, all the up to 
the master root key which encrypts all keys irrespective of what layer they 
belong to.  

Technology enablers Keystone 

Connected To Other 
Requirements 

• FR.FR.8: Continuous tracking and auditability of patch management: 
Key management is necessary for key establishment and hence to achieve 
a secure SW/FW update. 

• FR.FR.7: Zero Touch device Onboarding: Key management is necessary 
to achieve zero touch device onboarding. 

• FR.FR.9: Dynamic Credential Management: Key management is the 
baseline for providing the necessary crypto primitives (e.g., digital 
signatures) for dynamic credential management. 

• FR.FR.22: Policy-based device state configuration: Key-restriction 
policies binded to the device state are used allow or not the key usage. 

• FR.FR.17: Common Trusted Computing Base: A common TCB is the 
baseline as the trust anchor for key management. 

• FR.FR.25: Provably secure crypto protocols and algorithms: Proper 
key management is a prerequisite to ensure the security of crypto protocols 
and algorithms. 

Impactful Attacks 
and Mitigation 

Measures 

Attacks relevant to higher risk of cryptographic key exposure due to long-term 
storage of data-at-rest or tampering can be mitigated with the usage of key 
restriction usage policies and with frequent key updates. 

KPIs 

• Scalability of the key management w.r.t the number of devices engaged. 

• Performance of the key management w.r.t the time to establish a key 

• Efficiency of key hierarchy construction of different types of keys 

 

ID FR.FR.12 (Mandatory) 

Title Trust Aware Continuous Authentication and Authorisation  

Actors/Components Blockchain Infrastructure, Attestation Agent, TEE 
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Involved 

Description 

Background: Several well-established access control mechanisms exist in the 
literature. The adoption of an access control mechanism such as ABAC or RBAC 
for enabling authenticated and authorised resource and data accessing is necessary 
in the IoT domain. It must be noted also here the need for external, but authenticated 
and authorized, entities to retrieve data, mainly for certification purposes. The 
access control needs to consider the use of trust-related attributes (claims) as VPs. 
This requirement is needed in the REWIRE project to provide advanced security 
measures for the data on Blockchain Infrastructure, with the help of advanced 
technology enablers, such as wallet, smart contract, and TEE technologies.  

Description: In REWIRE it is necessary to ensure that the security measures 
implemented are not only robust but also efficient, as inefficient security measures 
may lead to practical difficulties and a lack of adoption. Thus, REWIRE needs to 
consider the use of crypto that can offer both security and efficiency. By 
incorporating such technology, the REWIRE project can ensure that sensitive data 
is protected without sacrificing usability and convenience. Besides, it's necessary to 
have access to reliable and trustworthy data for security assessment. This data is 
mainly related to the devices’ statuses but also those hard copies of the data stored 
in an off-chain and cloud server backend. Recall that it may not be practical to store 
all data on-chain and it is necessary to intake updated statuses to the ledger. To 
ensure authenticity and integrity, a robust mechanism for authenticated off-chain 
data retrieval is essential. By doing so, the REWIRE project can access dependable 
data for security assessment. 

In addition, the above provided solutions will be designed in an efficient and cost-
effective access control and TEE protection. This functional requirement enhances 
the capabilities of REWIRE by providing an advanced and efficient security 
mechanism that continuously monitors user behaviour and detects potential security 
risks in real-time. By adopting Trust Aware Continuous Authentication and 
Authorization, the REWIRE project can ensure that only authorized and 
authenticated resources can access the sensitive data. This technology also helps 
prevent unauthorized access and cyber-attacks, contributing to the overall security 
of the REWIRE project. Besides, the external data retrieval will be considered for 
the authentication so that the income and outcome data sources are trusted and 
verified. It has to be noted that the authentication and authorization mechanisms of 
REWIRE will not only be focusing on the devices belonging in the monitored 
ecosystem, but the same principles will be applied and need to be followed by 
external entities that need to access to the collected data (mainly for certification 
purposes). 

Remarks:  

− Flexibility related to who can generate these claims either by a trusted issuer 
or self-made attestation evidence is also important. 

Technology enablers Hyperledger Fabric, ABAC, RBAC, Keystone 

Connected To Other 
Requirements 

• FR.FR.3: Device status auditing: Authentication and authorisation of the 
device is necessary for the device status auditing. 

• FR.FR.14: Data veracity management: Authentication and authorisation 
of the device is necessary for veracity of the collected data. 

• FR.FR.17: Common Trusted Computing Base: Authentication and 
authorisation of the device is based on the underline TCB. 

Impactful Attacks 
and Mitigation 

Measures 

Potential impactful attacks are man-in-the-middle (ΜΙΤΜ), insider and DDoS attacks. 
Implementing a combination of hardware and software-based security mechanisms 
as well as regularly updating passwords and implementing DDoS protection 
mechanisms could minimise these attacks. 

KPIs 
• Authentication Success Rate 

• Time to authorize a device 

• Number of crypto operations (i.e., signature encryption per second) 
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• Size of signatures and certificates 

 

ID FR.FR.13 (Mandatory) 

Title Data provenance  

Actors/Components 
Involved 

ΤΕΕ 

Description 

Background: The term data provenance also called data lineage, refers to a record 
trail that accounts for the origin of a piece of data together with an explanation of 
how and why it got to the present place. REWIRE devices must be able to establish 
and verify the origin of sensitive data they receive, and potentially record this proof 
of origin together with data at rest, as they run in a fully decentralized environment.  

Description: Sensitive data exchanged in the framework of REWIRE must be 
protected by cryptographic means, to allow verifying its provenance and the fact that 
it has not been modified. Depending on the context, these means can consist in: 

• Asymmetric cryptographic primitives, such as digital signature. Digital 
signatures provide the advantage of being transferrable to a third party, 
meaning that it is possible for an entity to prove, in an undeniable way, that 
a piece of data was signed by another entity. Signatures can also be 
chained if multiple provenances (e.g., along a transmission path) must be 
established. However, digital signatures are more expensive than 
symmetric primitives, and signature generation is more difficult to protect 
against side-channel attacks (signature verification, on the other hand, does 
not suffer from this drawback, as it involves no secret parameter). 

• Symmetric cryptographic primitives, such as authenticated encryption. 
Symmetric primitives allow verifying that a piece of data originates from an 
entity knowing a specific secret key and has not been modified. However, 
this verification is not transferrable to a third party (no distinction can be 
made between the data sender and receiver) and can typically not be 
chained. Less costly and easier to protect against side-channel attacks, they 
remain nonetheless useful in cases where such transfer is not required. 

Remarks:  

− Data provenance (ability to check the integrity of data and the identity of its 
emitter) must not be confused with verifiability that the data is harmless, 
which is addressed by misbehaviour detection. 

Technology enablers Keystone, Hyperledger Fabric 

Connected To Other 
Requirements 

• FR.FR.11: Flexible and reliable key management: Key management is 
the baseline for providing the necessary crypto primitives (e.g., digital 
signatures) for assuring the integrity and data provenance. 

• FR.FR.17: Common Trusted Computing Base: Data Provenance is 
based on the underline TCB. 

Impactful Attacks 
and Mitigation 

Measures 

Potential impactful attacks are man-in-the-middle (ΜΙΤΜ), cryptanalysis and side-
channel attacks.  

KPIs 
• Scalability of provenance w.r.t the number of devices engaged, several 

actors and data. 

 

ID FR.FR.14 (Mandatory) 

Title Data veracity management 

Actors/Components Blockchain Infrastructure, Secure Oracle, Attestation Agent, Keystone TEE 
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Involved 

Description 

Background: Data veracity management is a critical aspect of ensuring the integrity 
of data within the IoT domain. By establishing a trustworthy and auditable data 
provenance mechanism, the system can ensure the veracity and traceability of vital 
data, thereby augmenting the security and operational assurance of the IoT 
ecosystem. A blockchain-based oracle can provide data veracity validation by 
verifying the accuracy and integrity of data before it is entered into the blockchain. 
On top of that, the execution of data transaction needs to take place through these 
secure oracles and with the use of smart contracts supported by root of trust.  

Description: To provide trusted and accurate data, the use of a blockchain-based 
oracle is essential. In the context of REWIRE, a secure oracle acts as a trusted 
intermediary between external data sources and the blockchain infrastructure. The 
secure oracle is responsible for verifying the authenticity and veracity of data before 
it is entered into the blockchain. The use of a blockchain oracle enhances the 
veracity of the data management process and helps to prevent the introduction of 
fraudulent or inaccurate data into the system. This functional requirement enhances 
the capabilities of REWIRE by providing a reliable method for ensuring the veracity 
of data within the system. By utilizing a TEE based blockchain oracle, the REWIRE 
project can ensure that only trusted and accurate data is utilized for security 
assessment and certification. This helps to improve the overall security posture of 
IoT devices and ensures that they meet the necessary cybersecurity standards.  

Remarks:  

− Secure oracles are enabled by the REWIRE customizable TEE to offer the 
necessary crypto primitives and ensure the secure management of data 
sharing. 

Technology enablers  Keystone, Hyperledger Fabric, Secure Oracle 

Connected To Other 
Requirements 

• FR.FR.12: Trust Aware Continuous Authentication and Authorisation: 
C continuous authentication and authorisation of the device is a prerequisite 
for data veracity. 

• FR.FR.3: Device status auditing: REWIRE mechanisms should be able to 
identify critical devices statuses for checking the correct operational 
behaviour of devices which also affects the data veracity. 

• FR.FR.17: Common Trusted Computing Base: Data veracity is based on 
the underline TCB. 

Impactful Attacks 
and Mitigation 

Measures 

Potential impactful attacks are device tampering, sybil attacks and insider attacks. 
Implementing a combination of cryptographic mechanisms, access controls, 
monitoring solutions, and regular audits could minimise these attack vectors. 

KPIs 
• Data Integrity Rate 

• Data Consistency Rate 

 

ID  FR.FR.15 (Mandatory)  

Title  Confidentiality and integrity in data processing   

Actors/Components 
Involved  

TEE 

Description  

Background: REWIRE needs to ensure the data integrity and confidentiality of critical 
functions running on the IoT devices so that to guarantee the operational assurance 
of the device and the critical services offered by both the device and the REWIRE 
platform. Such critical functions can include key management, attestation or SW 
update validation. This must be performed in a way that an application built with 
trusted and untrusted parts is able to call one of such critical functions from the 
untrusted part, then through a high-privileged component transition data and 
execution to the trusted part and remain unable to access the trusted part. This 
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guarantees confidentiality and integrity. On the other hand, the trusted part must be 
able to execute code and manipulate data and return results back to the untrusted 
world through the high-privileged component. It is also important to be able to seal 
and unseal data, while having a way, such as monotonic counters, which prevents 
rollback attacks and bad data updates.  

Description: The key component to achieve this is the REWIRE TEE (for which, 
namely, Keystone has been proposed). By means of the capabilities normally issued 
in Keystone, REWIRE must ensure the integrity and confidentiality of data passing 
through the untrusted world to the trusted world of the device. This requirement needs 
to be considered also on the level of confidentiality of data between different TEEs, 
between trusted portions of memory (i.e., enclaves), between the OS and the 
enclaves, between user applications and the enclaves, plus in terms of the necessity 
of being able to successfully migrate the execution (together with data) of critical 
functions between different TEEs.   

The REWIRE TEE must protect the confidentiality and integrity of all the enclave code 
and data at all points during execution. Ideally, it must protect against a physical 
adversary even though it has access to DRAM or the OS. The high-privileged 
component must be fully trustable, and it must be verified by the root of trust in 
hardware during boot time. Such high-privileged component (i.e., the Security Monitor 
if referring to Keystone) must perform memory isolation (e.g., by means of leveraging 
PMP in the case of the RISC-V ISA), while being able to receive calls from the OS 
and such isolated memory regions.  

Remarks:   

− A trusted high-privileged component must specify physical memory regions 
to isolate and control their memory access permissions. 

− Complete isolation must be achieved from all other elements except the high-
privileged component and the own isolated memory region. 

Technology enablers  Keystone 

Connected To Other 
Requirements  

• FR.FR.2: Secure remote asset management and reconfiguration 
effectiveness: The SW/FW update provenance is computed inside an 
isolated memory region with the support of the TEE. 

• FR.FR.3: Device status auditing: Confidentiality and integrity is crucial for 
auditing which also includes attestation results.  

• FR.FR.11: Flexible and reliable key management: Key management is the 
baseline for providing the necessary crypto primitives for assuring 
confidentiality and integrity, while the TEE can allow the key generation take 
place in enclaves.  

• FR.FR.13: Data provenance: Confidentiality and integrity is crucial for data 
provenance. Also, the TEE can allow intra-enclave enhancement of data 
provenance. 

Impactful Attacks and 
Mitigation Measures  

Keystone does not natively protect the enclave or the SM against timing side-channel 
attacks. SM, RT, and app programmers should use existing software solutions to 
mask timing channels. In addition, Keystone hardware manufacturers can supply 
timing side-channel resistant hardware  

KPIs   N/A 

5.3 Operational Assurance Requirements 

ID FR.FR.16 (Mandatory) 

Title AI-assisted misbehaviour detection  

Actors/Components 
Involved 

Blockchain Infrastructure, Secure Oracles, AI-based Threat Intelligence, Off-chain 
Data Storage 

Description Background: The correct operation and behaviour of every device in a network 
needs to be ensured to provide the users with secure services and protect the 
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integrity of the data that is shared across the nodes of the distributed network. 
Misbehaviour detection can offer an automatic method to detect and address threats 
by checking the plausibility, consistency, and behaviour of these nodes and on the 
network as a whole. AI-assisted misbehaviour detection mechanisms are found to 
be more effective against attackers that pretend to be a network node compared to 
traditional security mechanisms. 

Description: REWIRE will leverage AI-assisted misbehaviour detection 
mechanisms that will help identify abnormalities by checking the nodes’ behaviour 
to align with protocol specifications. They will also evaluate the correctness of the 
data that is shared across the devices. The AI-misbehaviour detection mechanism 
will utilize both business and network data originated from the Blockchain and off-
chain data storage to detect abnormalities. It will then provide the appropriate 
information about the detected anomalies in order to assess the level of threat and 
take the actions to protect the system against them. 

Remarks:   

− Blockchain will be used for AI-based misbehaviour detection as part of the 
chain code of SCs to ensure the trustworthy training and inferencing of AI 
FL-models. 

Technology enablers Hyperledger Fabric, FL-models 

Connected To Other 
Requirements 

• FR.FR.1: Dynamic awareness on potential vulnerabilities and threats 
and complete overview of the deployed environment: The AI-
misbehaviour detection mechanism needs to provide information regarding 
misbehaviour incidents for a more accurate and dynamic risk assessment. 

• FR.FR.3: Device status auditing: The AI-misbehaviour detection 
mechanism needs to provide information regarding misbehaviour incidents 
for auditing of the device. 

Impactful Attacks 
and Mitigation 

Measures 

The AI-misbehaviour detection will be used to detect abuse case against the monitored 
systems of the ecosystem where REWIRE framework is deployed. These abuse case 
may be a product a malevolent actor, or they may be attributed to system 
misconfigurations. Any attack which is reflected to the data which are used in the AI 
system could be a potential case where the AI-based misbehaviour detection 
mechanisms of REWIRE can be used. Our aim will be to identify attacks at the 
application layer of the monitored deployments focusing on data logs and behavioural 
characteristics of the devices. The AI-based misbehaviour detection will focus on the 
detection of incidents. Mitigation measures for attacks could be applied as attestation 
policies that can regulate the behaviour of specific processes that exhibit a malicious 
behaviour. 

KPIs • Detection accuracy 

• Timeliness of detection 

 

ID FR.FR.17 (Mandatory) 

Title Common Trusted Computing Base  

Actors/Components 
Involved 

TEE 

Description 

Background: The security of modern computing systems has come under scrutiny 
due to the abundance of vulnerabilities related to the high complexity of OSs and 
hypervisors. Due to this, it has become more attractive to rely on smaller and lower 
layers, i.e., FW or even immutable HW, to enforce security and to reduce the 
underlying TCB. Also, due to the various and diverse systems, a common TCB 
integrated in all the different use cases is necessary.  

Briefly, the TCB of a device is the software stack and hardware components that are 
required for it to function correctly and guarantee the security and operational 
requirements. A common TCB ground can ensure the applicability of the formal 
verification and the security-by-design principle of REWIRE and thus its crucial for 
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the project. In addition, a common base enables the integration to the various 
endpoints in REWIRE (e.g., oracles, end user device and back-end). 

Description: In REWIRE, the TCB solution should be used in all the diverse and 
safety-critical systems of the project. A common TCB will foster the evaluation the 
defined theorem proofs and the crypto implementations. Such a requirement leads 
us to the adoption of an open-source framework for RISC-V for all the systems that 
are going to be used in the REWIRE use cases. On top of that, by being agnostic of 
the underline TCB, REWIRE seeks to foster collaboration and innovation within the 
IoT ecosystem, allowing more flexible and adaptable solutions as the technology 
evolves. Thus, it is a strategic decision that ensures the future-proof of REWIRE 
advancements in the safety-critical IoT systems.    

Remarks: 

− REWIRE should aim to create a TCB that can be used in all the diverse 
systems of the project. 

− A common TCB will reinforce the assurance level as the formally verified 
underline technology among the different systems. 

Technology enablers Keystone, RISC-V, Genesis 2 board, Linux OS, Crypto co-processor, 

Connected To Other 
Requirements 

• FR.FR.7: Zero Touch device Onboarding: A common TCB is necessary 
to achieve zero touch device onboarding. 

• FR.FR.9: Dynamic Credential Management: A common TCB is the 
necessary trust anchor for credential management. 

• FR.FR.11: Flexible and reliable key management: A common TCB is the 
necessary trust anchor for key management. 

• FR.FR.12: Trust Aware Continuous Authentication and Authorisation: 
A common TCB is the necessary trust anchor for continuous authentication 
and authorisation. 

• FR.FR.13: Data Provenance: A common TCB is the necessary trust anchor 
for data provenance. 

• FR.FR.14: Data veracity management: A common TCB is crucial for the 
data veracity of the collected data. 

• FR.FR.20: Operational assurance and configuration integrity: A TCB 
acts as the trust anchor for assuring correct operation and configuration 
integrity of a device. 

• FR.FR.21: Chain of trust creation: A TCB acts as the trust anchor for trust 
establishment. 

• FR.FR.26: Computer-aided verification of security/safety profiles of 
systems: A TCB acts as the trust anchor for verification of security/safety 
profiles of systems. 

Impactful Attacks 
and Mitigation 

Measures 

The attack surface should be minimised considering the formally verified TCB. 

KPIs N/A 

 

ID FR.FR.18 (Mandatory) 

Title Secure Measurement and Attribute Extraction 

Actors/Components 
Involved 

REWIRE Tracer, SW/FE Validation Component (Hook instrumentation), 
Attestation mechanisms (Integrity Verification), REWIRE Tracer 

Description Background: Traditional static analysis techniques cannot capture the dynamic 
threats manipulating dynamically the execution flow of a code base. Thus, more 
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sophisticated, and dynamic techniques are need, while legacy dynamic tracing 
techniques are not scalable due to the state explosion problem.  

Remote Attestation (RA) techniques are an essential part of trusted computing. 
Current RA techniques should provide proofs of static and dynamic system 
properties to offer holistic security, through verification of system’s integrity. These 
dynamic properties are used as evidence to verify the system integrity during 
runtime. To do so, runtime monitoring of the system data and its execution flows 
enables the collection of useful information about the behaviour of the system. Thus, 
potential anomalies or deviations from intended behaviour can be identified. 
However, dynamic attestation has some challenges from the dynamic nature of the 
attributes itself making it difficult to identify and deduce their good state to scalability 
and efficiency issues. 

Description: REWIRE requires a non-intrusive runtime validation process of the 
runtime data and execution stream. The dynamically collected execution traces on 
the devices (e.g., REWIRE evidence collectors), upon a runtime attestation fail (i.e., 
attack indication), will be further analysed dynamically to emulate the problematic 
execution path and potentially uncover a previously unseen malicious execution 
behaviour. The REWIRE Tracer should be able to extract the system state to be 
validated. Apart from binary and configuration files signatures, the tracer needs to 
be able to perform non-intrusive memory introspection to enable control flow 
attestation during run-time. 

  
Remarks: 

− REWIRE, in the case where the tracer is not positioned in the trusted world 
(e.g., enclave), will assure that the tracer is in a secure state and the 
captured traces are valid and not tampered with (i.e., Integrity of Trust 
Measurements). 

− REWIRE tracing is aimed to be efficient since only a fraction of the execution 
needs to be monitored, due the minimisation of the stack that needs to be 
introspected as a result of the formal verification of the HW/SW co-design, 
and as a result of the use of monitoring hooks. 

Technology enablers eBPF, pTrace, RISC-V 

Connected To Other 
Requirements 

• FR.FR.20: Operational assurance and configuration integrity: The 
secure measurement and attribute extraction is the baseline to provide 
operational assurance through attestation. 

Impactful Attacks 
and Mitigation 

Measures 

REWIRE will assure the correct state of the tracer, either running in the enclave 
(trusted word) or not (untrusted word) minimising the attack surface of not valid 
traces. 

KPIs • More efficient and scalable tracing techniques compared to the traditional 
ones due to the reduced ISA space 

 

ID FR.FR.19 (Mandatory) 

Title Device provenance and device status  

Actors/Components 
Involved 

Attestation Agent, TEE, BC Infrastructure, 

Description 

Background: To ensure the overall trustworthiness of the IoT ecosystem, data are 
collected and analysed in order to detect potential misbehaviours. This involves 
management of provenance information especially in distributed environments such 
as IoTs. Decentralised environments must establish the origin of data (data 
provenance) and verify it to take a proactive approach to security rather than a 
reactive approach post-attack. Further, device provenance provides guarantees that 
a device has been onboarded correctly in the system. Moreover, the health (status) 
of a device is equally important in the context of REWIRE. Device status 
corresponds also to the results from device attestation and/or SW/FW update 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 92 of 177 REWIRE D2.1 

  

      

validation, considering corresponding policy regulations, and it is used to determine 
the device and the systems overall trustworthiness.  

Description: It is difficult to have a high level of certainty about where sensitive data 
might be located and the origin of data in the fully decentralised environment that is 
REWIRE. Thus, we need to differentiate between the integrity and attribution of a 
message from the verifiability of the message, which is captured for the requirement 
of misbehaviour detection, to determine data provenance. Tracking the origin of data 
may cause privacy issues, thus, where appropriate we should consider using digital 
signatures and DAA-A in REWIRE (see the zero-touch onboarding requirement). In 
doing so, we can enable the verification of authorship of verifiable statements to 
belong to a device without breaching the privacy of the device. 

With respect to device status in REWIRE, the health of a device is useful information 
to actors in the BC infrastructure to determine the devices’ trustworthiness when 
attempting to onboard into the network or set up communication with other devices 
in the network. Device status also aids in REWIRE identifying security 
risks/vulnerabilities to reduce the chance of attacks.  

Remarks:   

− The TEE (Keystone) can allow intra-enclave enhancement of data 
provenance. 

Technology enablers Keystone, Hyperledger Fabric 

Connected To Other 
Requirements 

• FR.FR.3: Device status auditing: Device provenance and status is 
necessary for the device status auditing.  

• FR.FR.7: Zero-touch onboarding: Zero-touch onboarding is a perquisite 
for the device provenance and status. 

• FR.FR.18: Secure Measurement and Attribute Extraction: Secure 
measurement and attribute extraction is of paramount importance to verify 
the device status. 

Impactful Attacks 
and Mitigation 

Measures 

REWIRE will assure the system’s integrity and detection of any device misbehaviour 
and/or tampering attack. Control-flow attestation.is the necessary technique for this 
assurance. 

KPIs 
• Efficient and scalable attestation techniques verifying the device status in 

resource constrained edge devices. 

 

ID FR.FR.20 (Mandatory) 

Title Operational assurance and configuration integrity  

Actors/Components 
Involved 

Risk Assessment, Attestation Agent, Trust Aggregation Overlay, REWIRE Evidence 
Collector 

Description 

Background: Several attestation schemes exist in the literature covering all phases 
of a device’s execution; from the trusted boot and integrity measurement of an edge 
device, enabling the generation of static, boot-time or load-time evidence of the 
system’s components correct configuration (e.g., Configuration Integrity 
Verification), to the runtime behavioural attestation of safety-critical components of 
a system providing strong guarantees on the correctness of the control flow (Control-
Flow Attestation). However, due to scalability and performance issues of these 
schemes, there is a need to increase the efficiency necessary. Assurance of the 
operation and configuration integrity are crucial; thus the SW/FW update needs to 
be attested in an efficient way. 

Description: REWIRE requires a new breed of efficient attestation mechanisms that 
can provide the same level of security guarantees, while increasing the efficiency 
due to the limited vector of properties that need to be attested. Based on this 
attestation assessment the state of the component could be derived and classified 
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into compromised, under-attack, out-dated, normal operation, and others. 

On top of that, REWIRE’s TEE provides the necessary mechanisms to enable the 
isolated execution of sensitive functions in enclaves. This can be achieved by 
utilising Keystone's Security Monitor (SM), that ensures physical memory isolation 
for said enclaves by manipulating RISC-V PMP registers. Critical services, including 
cryptographic services like key derivation must run in isolation from any other 
software, including privileged one, are running on the same platform. 

Remarks: 

− REWIRE state and/or integrity system verification acts as an ex-ante 
requisite in many situations, e.g., prior to a TEE Migration but also as an ex-
post requisite for others, e.g., after an OTA FW update. 

− The REWIRE TEE must ensure that the memory assigned to a critical 
service is inaccessible from other services and even the OS. 

− REWIRE attestation is efficient since it focuses only on sequence of 
assembly commands from the ISA instruction set of the RISC-V. 

Technology enablers Keystone 

Connected To Other 
Requirements 

• FR.FR.17: Common Trusted Computing Base: A common TCB is the 
cornerstone for assuring correct operation and configuration integrity of a 
device. 

• FR.FR.18: Secure Measurement and Attribute Extraction: The secure 
measurement and attribute extraction is the baseline to provide operational 
assurance and configuration integrity. 

Impactful Attacks 
and Mitigation 

Measures 

Due to the increasing attack landscape, it is necessary to cater for efficient 
attestation mechanisms to verify software and device integrity for detecting run-time 
modifications in next generation systems-of-systems. All code-injection, ROP and 
sophisticated attacks that tamper with state information in the program’s data 
memory (e.g., the stack and the heap) should be able to be detected by the REWIRE 
attestation schemes (e.g., CFA). 

KPIs • More efficient and scalable attestation techniques compared to the 
traditional ones due to the reduced ISA space and the monitoring hooks 

 

ID FR.FR.21 (Mandatory) 

Title Chain of trust creation 

Actors/Components 
Involved 

TEE, Blockchain infrastructure 

Description 

Background: A major challenge is to guarantee the operational assurance and trust 
establishment among different and heterogeneous devices in a distributed 
environment to ensure its trustworthy operation in the context of a collaborative 
infrastructure.  

The chain of trust concept is a hierarchical series of trusted components within a 
system that ensures the security (and the integrity) of its software and hardware 
components, while part of establishing the chain of trust is the creation of a secure 
environment where only trusted and verified components may operate and interact 
with each other. However, restricted and distributed IoT devices does not allow the 
deployment of more complex protection schemes such as TPMs to support the trust 
concept. Thus, there is an urgent need for more lightweight software-based 
solutions that can act as the RoT, the baseline of the trust chain. 

Description: RoT is the cornerstone to facilitate remote attestation protocols by 
offering the necessary crypto functions that verify the trustworthiness of the 
underline device. In the context of REWIRE, TEE functionalities will be utilised, as 
software and more lightweight solution of RoT, to manage the device’s keys. More 
specifically, REWIRE TEE should provide the necessary mechanisms for trust 
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management and for creating a chain of trust among heterogeneous and limited IoT 
devices. In essence, this trust should be verifiable and based on reliable evidence, 
allowing for transparency and accountability within the IoT ecosystem. This 
approach will assist on the delegation of critical tasks (e.g., in the automotive 
domain) in devices proved their trustworthiness. 

Remarks: 

− Attestation protocols will guaranty the trustworthiness of devices in such a 
distributed environment. 

Technology enablers Keystone, Hyperledger Fabric,  

Connected To Other 
Requirements 

• FR.FR.17: Common Trusted Computing Base: A common TCB is the 
baseline as the trust anchor for the creation of chain of trust. 

Impactful Attacks 
and Mitigation 

Measures 

Sophisticated attacks (e.g., code-injection and ROP attacks) should be able to be 
detected in an efficient manner, minimising the attack surface and increasing the 
trust among heterogeneous and limited IoT devices. 

KPIs 

• Scalability of the trust management mechanism among heterogeneous 
and limited IoT devices. 

• Time for transmitting the attestation evidence 

 

ID  FR.FR.22 (Mandatory)  

Title  Policy-based device state configuration   

Actors/Components 
Involved  

TEE 

Description  

Background: Complex distributed systems require policies that must be set during 
design time and implemented during runtime. REWIRE is no exception to this. All use 
case scenarios will make use of policies for their correct performance. Examples can 
include (1) the onboarding of a new device, which can include policy-regulated 
accesses to the network (2) performing SW/FW updates, that must be policy-controlled 
and attested (3) migrating data and execution to a more secure remote enclave, or (4) 
revocation of credentials for a suspicious device.   
 
Description: The REWIRE TEE must express the configuration of the design time 
phase and must be able to measure itself and report back its configuration. This 
expression of the design time phase shall allow for policy enforcement and policy-
based access to different keys for different uses. Ways to do this must be explored 
(i.e., will policy enforcement happen at the Security Monitor level? Will some of it run 
inside enclaves?). Nevertheless, the Security Monitor should be modular to adapt to 
different devices and different policies. In this regard, the TEE provider could configure, 
build and deploy the security monitor to suit different needs.  
The REWIRE system requires that different applications in the untrusted world that 
correspond to basic functions, common to all use cases, communicate either to the 
Security Monitor or to/from an enclave using the Security Monitor as a means to protect 
the enclave. This must be performed according to policies provided by the use cases 
(security models requirements) and using the Security Monitor as the central point for 
arbitration. The TEE requires that:  

- The Security Monitor must have the highest privileges, be trustable and have 
access to the HW root of trust and any crypto co-processor at the HW level, if 
applicable. Generally speaking, the platform must support storage of a device 
root key accessible only to the bootloader / Security Monitor. 

- The Security Monitor must be able to arbitrate communication between the 
untrusted host and the machine (i.e., allow or deny the protection and 
execution of an enclave that was initially allocated by the untrusted host). This 
must be performed following the aforementioned policies, which should cover:  

o Device Secure Enrolment  

o Attestation  



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 95 of 177 REWIRE D2.1 

  

      

o Function migration  

o Isolation 

- Beyond arbitration, the Security Monitor must provide keys for securing critical 
enclave functions such as enclave migration or local and remote attestation. 

Remarks:  

− The Security Monitor (trusted and highest-privileged component) must 
express design time phase policies by being able to allow or restrict access of 
untrusted hosts to the trusted world.  

Technology enablers  Keystone 

Connected To Other 
Requirements  

• FR.FR.2: Secure remote asset management and reconfiguration 
effectiveness: The verification of the SW/FW update provenance determines 
whether such update can be run inside an isolated memory region. 

• FR.FR.3: Device status auditing: Attestation must be policy-regulated  

• FR.FR.11: Flexible and reliable key management: The TEE can allow that 
key generation takes place in enclaves, while some of it can take place in the 
Security Monitor 

Impactful Attacks and 
Mitigation Measures  

Keystone does not natively protect the enclave or the SM against timing side-channel 
attacks. SM, RT, and eapp programmers should use existing software solutions to 
mask timing channels. In addition, Keystone hardware manufacturers can supply 
timing side-channel resistant hardware.  
 
Additionally, the RoT protects important assets such as keys of the device (e.g., 
ownership, attestation, device keys) on shielded or protected locations in the device. 
The integrity of these locations should be preserved, and they should be prevented 
from unauthorized modification otherwise the Identity of the device might get 
compromised and/or the RoT might not be able to verify different pieces of software 
neither to compute valid signatures. 

KPIs   N/A 

5.4 Formal verification Requirements 

ID FR.FR.23 (Mandatory) 

Title Formally Verifiable HW-Security designs  

Actors/Components 
Involved 

The hardware-layer of the REWIRE architecture. Notably, the RISC-V core and an 
AES co-processor. 

Description 

Background: The hardware design should be formally verified in order to provide 
guarantees about the required level of trustworthiness when such devices are 
placed in their operational environments.  

Description: The design phase of REWIRE aims at using formal methods to assert 
security properties of the proposed hardware architecture, therefore reducing the 
number of threats that need to be covered/detected by the run-time attestation. 
Hence, the hardware architecture used in REWIRE needs to enjoy a high-level of 
trustworthiness regarding its security claims. Examples of such security claims could 
be protection against side-channel attacks (e.g., Spectre and Meltdown) at the 
RISC-V core micro-architectural level, for instance. REWIRE should also focus on 
functional correctness of hardware IPs, resulting in an architecture that is robust 
against vulnerabilities and exploits stemming from implementation bugs. Regarding 
the latter, components that are formally verified against a higher-level specification 
shall be used: one example of such could be a verified functionally correct instance 
of an AES co-processor. Such AES-co-processor (either tightly or loosely coupled) 
shall be accessed with a RISC-V custom instruction, which will be part of the 
REWIRE extended RISC-V ISA. 

The formal verification tools and languages for achieving this requirement can vary. 
REWIRE should explore the use of different techniques, including model checking 
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(both directly at the model-level and through external tools) and theorem proving 
(likely with the Coq proof assistant). 

Remarks:  

− REWIRE should explore the use of different techniques such as model 
checking and theorem proving. 

Technology enablers Coq proof assistant 

Connected To Other 
Requirements 

• FR.FR.24: Expression of requirements and assumptions using formal 
specification languages: Expression of requirements and assumptions 
using formal specification is necessary to formally verifiable HW-security 
designs. 

Impactful Attacks 
and Mitigation 

Measures 

Micro-architectural side-channel attacks (e.g., Spectre, Meltdown, Implementation 
exploits / implementation bugs such as buffer or integer over/underflows) can be 
prevented with formally verifiable HW-security designs. Cache and time partitioning 
controlled speculative execution and functional correctness proofs are necessary 
techniques to mitigate these attacks. 

KPIs • Efficiently formally verified HW-Security designs w.r.t the number of ISA 
instructions. 

 

ID FR.FR.24 (Mandatory) 

Title 
Expression of requirements and assumptions using formal specification 
languages 

Actors/Components 
Involved 

REWIRE's Security Requirements. The AADL representation of the REWIRE 
architecture. 

Description 

Background:  From the perspective of the design stage, each IoT Service Provider 
needs to set its overarching requirements with formal descriptions using 
specification languages. To do so, requirements stemming from the use cases and 
the REWIRE framework itself need to be expressed using specification languages 
so that to be given as inputs in the Formal verification framework of REWIRE. 

Description: REWIRE's Security Requirements shall be expressed in formal 
languages that can be automatically given as inputs for tools such as theorem 
provers and model checkers. To achieve that, REWIRE shall use AADL plugins for 
automatic reasoning about requirements. Requirements shall finally be mapped to 
corresponding Assurance Cases using Resolute, an AADL plugin for formal 
reasoning.  

Remarks:  

− By connecting security requirements to a formal compelling argument, trust 
that every single security requirement is satisfied by the architecture is 
achieved. 

Technology enablers AADL model 

Connected To Other 
Requirements 

• FR.FR.23: Formally Verifiable HW-Security designs: Expression of 
requirements and assumptions using formal specification is necessary to 
formally verifiable HW-security designs. 

Impactful Attacks 
and Mitigation 

Measures 

N/A 

KPIs N/A 

 

 

ID FR.FR.25 (Mandatory) 

Title Provably secure crypto protocols and algorithms 
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Actors/Components Involved 
REWIRE Design-time architecture, Formal Verification Tools, Provable secure 
crypto for secure communication, Security models 

Description 

Background: Cryptographic protocols cannot just be based on ad hoc 
constructions evaluated by attempting attacks against them, as this approach 
leaves the door open to unexpected attacks or loosely defined security properties. 
Instead, state-of-the-art protocols must come with precise definitions on the 
properties they should achieve, and a mathematical proof (reduction) that these 
properties are indeed enforced based on some well-defined assumptions. In 
addition, implementations of these protocols should undergo formal verification 
ensuring that they do meet the protocol’s specifications. 

Description: REWIRE will use several cryptographic protocols, including: 

• A (symmetric) authenticated encryption algorithm, specifically designed 
for the critical operation of securely distributing SW updates. Depending 
on the context, this scheme could also be used for transmission of other 
critical data. 

• Various symmetric and asymmetric protocols and algorithms allowing 
operations such as key exchange, digital signature and encryption of 
regular data exchanges, etc.  

All exchanges of sensitive data between REWIRE devices should be protected 
(authenticated and/or encrypted) through cryptographic means. In addition, the 
authenticated encryption protocol used for SW update distribution should provide 
protection against side-channel attacks. This authenticated encryption scheme, 
specifically designed for REWIRE, should be provably secure, and its security 
proof should take into account the threat of side-channel attacks, to the extent of 
the current state of the art in this field. Implementations of this scheme designed 
for REWIRE should be formally verified to ensure it meets its specifications. 

Other cryptographic protocols used in REWIRE should correspond to widely used 
good practices, such as industrial or de facto standards. They should ideally be 
provably secure, unless other constraints (such as interoperability with standards) 
prevent it. REWIRE will investigate on mathematical and modelling process 
aiming to provide proofs on the correctness of the crypto implementations and on 
the security of their primitives.  

Remarks: provably secure schemes will take the form of: 

− A specification of the scheme, together with a security proof, in the form 
of an academic paper. 

− A formal verification of the scheme’s implementation 

Technology enablers Keystone 

Connected To Other 
Requirements 

• FR.FR.9: Dynamic credential management: Dynamic credential 
management is imperative in order to ensure the security of crypto 
protocols and algorithms. 

• FR.FR.11: Flexible and reliable key management: Key management is 
the baseline to ensure the security of crypto protocols and algorithms. 

Impactful Attacks and 
Mitigation Measures 

Several attacks can be prevented when the adopted crypto protocols and 
algorithms are provable secure such as cryptanalysis and side-channel attacks.  

KPIs • Performance and efficiency of evaluating the security of crypto protocols 
and algorithms 

 

ID FR.FR.26 (Mandatory) 

Title Computer-aided verification of security/safety profiles of systems 

Actors/Components 
Involved 

REWIRE Design-time architecture, Formal Verification Tools, Provable secure 
crypto for secure communication, Security models 
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Description 

Background: The process of designing, implementing, and deploying 

cryptographic mechanisms is notoriously difficult due to the prevalence of design 

flaws, implementation bugs, and side-channel vulnerabilities, even in widely 

deployed mechanisms. Each step of the process is highly complex and filled with 

potential pitfalls. At the design level, cryptographic mechanisms must meet specific 

security objectives against a defined class of attackers. This often involves 

composing intricate building blocks, with abstract constructions making up 

primitives, primitives forming protocols, and protocols comprising systems. At the 

implementation level, high-level designs must be translated into concrete functional 

details such as data formats, session state, and programming interfaces, while 

prioritizing interoperability and performance. At the deployment level, the 

implementation must also consider low-level threats, such as side-channel attacks, 

that were not considered at the design level. All the above strengthens the case for 

a multi-phase design toolchain supported by automated processes and tools that 

will support the verification and validation of safety and security profiles for 

embedded systems.  

Description: A level of automation in the verification processes should be 
achieved in REWIRE. This may refer only to a smaller part of the verification 
process. In addition, it depends on the methodologies that will be used (e.g., 
Theorem proofs or model checking). A toolchain specific to aid the security and 
safety designs will be based on a mature model-based system engineering 
approach that will enable both verification of designs as well as, traceability of 
requirements from systems level (overarching requirements) till low level 
embedded specifications.  

Remarks: 

− REWIRE will offer a 4-layered security sandbox comprising a toolchain that 
can efficiently safeguard and assess the trustworthiness level of an edge 
device throughout its entire lifecycle and application stack. 

Technology enablers Keystone 

Connected To Other 
Requirements 

• FR.FR.17: Common Trusted Computing Base: A common TCB is the 
necessary trust anchor for verification of security/safety profiles of 
systems. 

Impactful Attacks and 
Mitigation Measures 

The attack surface should be minimised considering the verification of 
security/safety profiles of systems. 

KPIs • Efficiently verification of security/safety profiles of systems  

5.5 Roots of Trust Capabilities & Properties 

Many security and protection mechanisms are currently rooted in software that, along with all underlying 
components, must be trustworthy [REF-167]. A vulnerability in any of those components could 
compromise the trustworthiness of the security mechanisms that rely upon those components. Stronger 
security assurances may be possible by grounding security mechanisms in roots of trust. Roots of trust 
are highly reliable hardware, firmware, and software components that perform specific, critical security 
functions. Because roots of trust are inherently trusted, they must be secure by design. As such, many 
roots of trust are implemented in hardware so that malware cannot tamper with the functions they provide. 
Roots of trust provide a firm foundation from which to build security and trust.  
 
The hardware root of trust has become the foundation for securing operations in edge computing systems 
[REF-168] and, as the security system, contains keys for cryptographic functions to enable a secure boot 
process. The secure implementation of a System-on-a-chip (SoC) design with a root of trust is aimed at 
protecting the hardware from malware attacks and can act as a standalone security module within the 
SoC. There are several types of hardware root of trust: one is silicon-based, which falls under both the 
fixed-function and programmable categories.  
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For a fixed-function root of trust, the security module consists of a state machine designed to perform a 
specific function, such as data encryption, validation, and key management. This type of security module 
is commonly used in IoT devices. On the other hand, the programmable root of trust is built around a CPU 
that performs all tasks as a state machine and can also execute a more complex set of security functions.  
 
REWIRE requires openness and interoperability. It also requires ease of integration in different scenarios 
where security is a cornerstone requisite. Different environments were considered when designing the 
project, such as Intel SGX and Arm TrustZone, but [REF-169] even though the proprietary TEEs bring 
many benefits, they have been criticized for lack of transparency, vulnerabilities, and various restrictions. 
For example, these TEEs only provide a static and fixed hardware TCB, which cannot be customized for 
different applications. Existing TEEs time-share a processor core with the Rich Execution Environment 
(REE), making execution less efficient and vulnerable to cache side-channel attacks. Moreover, 
TrustZone lacks hardware support for multiple TEEs, remote attestation, and memory encryption which 
are important requirements for REWIRE. 
 
REWIRE’s customizable TEE will be based on open-source architectures with a focus on RISC-V to 
deliver a solution that will ease deployment and system integration, guarantee interoperability on 
heterogeneous devices, and foster rapid adoption in the community. RISC-V is an open and free ISA, 
which allows anyone to use, modify, and extend. This customizable TEE will be based on Keystone, an 
open source full-stack enclave that runs on standard RISC-V cores and which features a modular design 
for better extensibility & portability. 
 
However, Sanctum was the first enclave design for the RISC-V ISA. In [REF-170], the authors’ prototype 
targeted a Rocket RISC-V core, an open implementation that allowed any researcher to reason about its 
security properties. Sanctum's extensions could be adapted to other processor cores, since they did not 
change any major CPU building block. However, they added hardware at the interfaces between generic 
building blocks (without impacting cycle time). Sanctum’s achievements were a foundation for Keystone; 
indeed, the former demonstrated that strong software isolation was achievable with a surprisingly small 
set of minimally invasive hardware changes, and a very reasonable overhead. Most of Sanctum's logic 
was implemented in trusted software, which did not perform cryptographic operations using keys. One of 
Keystone’s pillars, PMP, was however introduced in 2017 (RISC-V Priv. v1.10), rendering Sanctum’s non-
standard hardware extensions obsolete.  
 
Before we concentrate on the root of trust, let us consider that a Keystone-capable system consists of 
several components in different privilege modes [REF-171]: 

1. Trusted Hardware. A CPU package built by a trustworthy vendor, which must contain Keystone-
compatible standard RISC-V cores and root of trust. The hardware may also contain optional 
features such as cache partitioning, memory encryption, cryptographically secure source of 
randomness, etc. The Security Monitor requires platform specific plug-ins for optional feature 
support. 

2. Security Monitor (SM). It is M-mode software with small TCB. The SM provides an interface for 
managing the lifecycle of enclave as well as for utilizing platform-specific features. The SM 
enforces most of Keystone’s security guarantees since it manages the isolation boundary between 
the enclaves and the untrusted OS. 

3. Enclaves. Environments isolated from the untrusted OS and other enclaves.  

4. Enclave Applications (eapp). An eapp is the user-level application that executes in the enclave.  

5. Runtime is S-mode software which implements functionality such as system calls, trap handling, 
virtual memory management and so on for the eapps. 
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Figure 5.1: A Keystone-capable system and its components 

 
 
Keystone root-of-trust can be [REF-172] either a tamper-proof software (e.g., a zeroth-order bootloader) 
or hardware (e.g., crypto engine). At each CPU reset, the root-of-trust (a) measures the SM image, (b) 
generates a fresh attestation key from a secure source of randomness, (c) stores it to the SM private 
memory, and (d) signs the measurement and the public key with a hardware-visible secret. These 
standard operations can be implemented in many ways. Keystone does not rely on a specific 
implementation, Lee et al. [REF-173] prefer a crypto engine, nonetheless. The basis is in this case for the 
hardware to have a unique and immutable cryptographic identity. Besides authenticity, it is mandatory 
that the processor demonstrates that it has booted correctly and for this it can present a container 
measurement certificate.  
 
Different scenarios can take place for a system to accomplish this secure boot:  In one setting [REF-174], 
the processor hardware cryptographically measures the bootloader software and all software loaded by 
the bootloader, then uses the processor’s secret key to sign the measurement, producing a certificate. 
The public key associated with the processor’s secret key is signed by the manufacturer. The local or 
remote client verifies the signature and measurement using the processor’s public key. To produce such 
a certificate the processor must be provisioned with a public key pair. Generally, the manufacturer 
produces a key pair for each chip and embeds the private key into the chip, typically into secure non-
volatile memory. In this scenario however, the manufacturer knows the chip’s private key without the chip 
leaking it so even a correctly manufactured processor could have exposed keys at production.  
 
In an alternative setting, to maintain privacy of the secret key, a hardware True Random Number 
Generator (TRNG) can generate a random seed stored in secure non-volatile memory, which is used to 
generate a public/private key pair inside the processor. The manufacturer signs the public key, which can 
be stored in publicly readable non-volatile memory while the private key never leaves the processor and 
is unknown to the manufacturer.  
 
Yet a more recent approach is the use of silicon Physical Unclonable Functions (PUF), which extract 
volatile secret keys using semiconductor manufacturing variations that manifest when the chip is powered. 
PUFs are used as symmetric key generators in different commercial products. A PUF can be used to 
generate a random seed for a public/private key generator inside of a secure processor but there are no 
known published implementations of this. 
 
Lebedev et al. [REF-175] used a RISC-V Rocket chip architecture as a base to implement an attested 
execution processor which derived its cryptographic identity from manufacturing variations measured by 
a PUF. In this case, a bootloader built into the processor transformed the PUF output into an elliptic curve 
key pair, the public portion of which is signed by the manufacturer using its private key. 
 
All REWIRE components that at some point interact with the TEE require that – firstly – such trusted 
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environment has booted in a verifiable state, which means that every step in the boot process can be and 
is attested to the client. The bootloader is considered then the root of trust for the boot process.  
 
Different strategies can be taken at this point, and REWIRE’s root of trust requirements must dictate the 
ones to choose as to:  

• How our secure boot process will obtain its attestation root key 

• Whether the root of trust for measurement/verification differs from the root of trust for attestation 

• Whether components are verified using a signature from the manufacturer or by a measurement 
of their code 

 
 
In conclusion, REWIRE’s TEE implementation will be agnostic to the underline RoT, even though the 
implementation will be based on the RISC-V open-source architecture. On top of that, for the actual 
customizable TEE, the open-source Keystone will be used due to its modular design, which is a highly 
desirable feature for REWIRE. 

5.6 RoT Requirements for REWIRE  

ID  FR.FR.27 (Mandatory)  

Title  Trusted Root-of-Trust and secure boot 

Actors/Components 
Involved  

TEE 

Description  

Background: Many of REWIRE’s data and applications rely on the use of TEEs in 
the ecosystem’s devices / components, but for the former to be trustworthy they need 
to incorporate a secure-by-design trusted RoT. The RoT, for all intents and purposes, 
must be (as) inaccessible (as possible) outside the device, and in this way the device 
can trust the keys and other cryptographic information it receives from the RoT module 
and other components in the ecosystem can trust the device. The RoT must remain 
the foundation on which other secure operations depend and thus must contain 
protected keys for cryptographic functions to enable a secure bootstrapping process 
– this including a secure SM boot process. Every device / component in the REWIRE 
ecosystem must be able to boot using exclusively trusted and authenticated firmware 
/ software. Otherwise, the device might reboot at some point and run malicious code, 
rendering the device compromised. 

Description: The RoT (e.g., a hardware based crypto engine) must cryptographically 
measure the bootloader software and all software loaded by the bootloader, and then 
use the processor’s private key to sign the measurement, producing a certificate. The 
public key associated with the processor’s private key is signed by the manufacturer 
and it is known by others. The privacy of the secret key must be guaranteed (several 
methods can be explored, like using TRNG or PUFs). As part of the fully secure boot 
process, the RoT must also authenticate the SM. Specifically, at each CPU reset, the 
RoT must measure the SM image, then generate a fresh attestation key from a secure 
source of randomness, store it to the SM private memory, and signs the measurement 
and the public key with the hardware-visible secret key mentioned earlier. As seen, 
the RoT protects important assets such as keys of the device (which are then used 
for other security-critical functions like attestation) on shielded or protected locations 
in the device. The integrity of these locations should be preserved, and they should 
be prevented from unauthorized modification otherwise the identity of the device might 
get compromised and/or the RoT might not be able to verify different pieces of 
software (e.g., the SM) or compute valid signatures. During the operation of the 
device, the SM can provide security services to the TEEs or to other applications. If 
these services are anchored on the RoT, the SM should be able to attribute the 
services to the owning entity. 
 
Remarks:   

- A secure-by-design RoT (e.g., a hardware based crypto engine) must be able to 
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cryptographically measure the bootloader software, the Security Monitor and 
any other software at boot-time.  

- The TEE RoT in REWIRE can act as the foundation for critical security services 
/ concepts such as ownership, integrity and authenticity.  

- (Relations of trust) The Keystone user trusts the SM only after verifying if the 
SM measurement is correct, signed by trusted hardware (RoT), and has the 
expected version. The SM only trusts the hardware, and the host trusts the SM. 

Technology enablers  Keystone 

Connected To Other 
Requirements  

• FR.FR.3: Device status auditing: Secure measurements and attribute 
extraction are necessary for auditing of the state of the device. 

• FR.FR.17: Common Trusted Computing Base: At the heart of the TCB we 
have the underline RoT.  

• FR.FR.20: Operational assurance and configuration integrity: The first 
step to assure correct operation and configuration integrity is the trusted boot. 

• FR.FR.21: Chain of trust creation: The main idea behind the chain of trust 
is to have a trusted RoT. 

• FR.FR.31: Platform Measurement Service: In order for a TCB to provide 
valid measurements should be trusted. 

Impactful Attacks and 
Mitigation Measures  

A physical attacker can intercept, modify, or replay signals that leave the chip 
package. However, we assume that the physical attacker does not affect the 
components inside the chip package. Also, keystone does not natively protect the 
enclave or the SM against timing side-channel attacks. SM, Runtime, and eapp 
programmers should use existing software solutions to mask timing channels. In 
addition, Keystone hardware manufacturers can supply timing side-channel resistant 
hardware. 

KPIs  • Elapsed time to complete a trusted boot in a device. 

 

  ID  
FR.FR.28 (Mandatory/Optional)  

Title  Bootstrapped RoT  

Actors/Components 
Involved  

TEE  

Description  

Background: GlobalPlatform, depending on the RoT implementation categorizes the 
RoT to either bootstrapped or a non-bootstrapped RoT [10]. Today, several designers 
of security protocols, schemes, products, and services rely on a bootstrapped RoT to 
provide security. In a nutshell, a bootstrapped RoT is composed of one initial RoT and 
one or more extended RoT components, which together make up a bootstrapped RoT. 

Description: The TCB that will be used in REWIRE includes both a HW RoT and the 
SM (e.g., Keystone). The SM will be in charge of managing the HW and/or a 
cryptographic engine and will guarantee that the TEEs have certain security properties 
(e.g., isolation or integrity). The SM must be modular to adapt to the different devices 
and their needs. Furthermore, REWIRE might offer the option to provide additional 
features. Therefore, REWIRE considers a combination of an Initial RoT Component 
and the extension with more RoT Components [10]. In the end, after the booting 
process, it should be possible to validate different versions or flavours of the SM. 

Remarks:  

• REWIRE’s bootstrapped RoT includes both a hardware and software RoT 
(e.g., Keystone’s SM).  

• REWIRE’s customizable TEE is based on RISC-V to guarantee hardware- 
and software-trust on IoT devices due to the ability to use, modify, and extend. 

Technology enablers Keystone 

Connected To Other 
Requirements  

• FR.FR.17: Common Trusted Computing Base: The extensions of a 
bootstrapped RoT will be used to provide a common TCB.  

• FR.FR.21: Chain of trust creation: Chain of trust will be achieved with a 
bootstrapped RoT that includes both a hardware and software RoT. 
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Impactful Attacks and 
Mitigation Measures  

REWIRE minimizes the attack surface since the components of the bootstrapped RoT 
are trusted inherently. 

KPIs  
•  Light footprint w.r.t power consumption (e.g., RoT with the minimum 

function list and low complexity that still supports all of the required 
functions) 

  

ID  FR.FR.29 (Mandatory/Optional)  

Title  Immunity to Software Attacks and Integrity protection 

Actors/Components 
Involved  

 TEE, RoT 

Description  

Background: The increasing number of online IoT and edge devices exposes them 
to several software attacks. RoT is the baseline to provide immunity to these remote 
software attacks and assuring the integrity of the device. Ideally, immunity to software 
attacks and integrity protection should also protect against physical attacks, however 
in reality physical attack protection is difficult. Software RoT is mainly designed to 
resist software-based attacks, however if correctly designed it can also protect from 
hardware-based attacks. 

Description: As the components of the RoT are inherently trusted and are supposed 
to be secure by design, it should be guaranteed that the security critical functions that 
they perform cannot be compromised via software attacks. These functions can be 
implemented in hardware and/or protected firmware, but in any case, it should be 
guaranteed that they cannot be modified via a software attack. Additionally, the RoT 
protects important assets such as keys of the device (e.g., ownership, attestation, 
device keys) on shielded or protected locations in the device. The integrity of these 
locations should be preserved, and they should be prevented from unauthorized 
modification otherwise the Identity of the device might get compromised and/or the 
RoT might not be able to verify different pieces of software neither to compute valid 
signatures. 

Remarks:  

− REWIRE’s customizable TEE as the RoT should provide security form 
software attacks and integrity protection to all the critical functions. 

Technology enablers Keystone 

Connected To Other 
Requirements  

• FR.FR.27: Trusted Root-of-Trust and secure boot: A trusted RoT will be 
in position to provide immunity to software attacks and integrity protection. 

• FR.FR.30: Identifiable Ownership: The RoT should prove the ownership 
validity thus, is necessary to be immune to software attacks and have integrity 
protection. 

• FR.FR.31: Platform Measurement Service: The RoT should provide an 
assurance that that measurements are correctly captured thus is necessary 
to be immune to software attacks and have integrity protection. 

Impactful Attacks and 
Mitigation Measures  

 REWIRE’s customizable TEE should be immune to software attacks. To prevent side-
channel attacks from succeeding, the RoT needs to have built-in resistance. Different 
types of attacks (invasive or non-invasive) require different counter measures. It is 
also crucial to find the trade-off between the protection and the penalty such as power 
consumption. 

KPIs  •   Percentage of software-based attacks that can be successfully identified 

  

ID  FR.FR.30 (Mandatory/Optional)  

Title   Identifiable Ownership 

Actors/Components 
Involved  

 RoT, TEE 

Description  
Background: The control and ownership of the RoT is of paramount importance. The 
environment around the RoT evolves as time goes by, thus it is crucial for authorized 
users to be able to attribute the services provided by the underline RoT (e.g., 
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REWIRE’s TEE) to the owning entity. Especially in cases where the ownership of the 
RoT is different from the ownership of the platform containing the RoT. 

Description: During the operation of the device, the SM can provide security services 
to the TEEs or to any other application. If these services are anchored on the RoT, the 
SM should be able to attribute the services to the owning entity. Furthermore, If the 
code of the RoT must be updated due to the discovery of a critical bug, it should be 
guaranteed that only the owner of the RoT can perform such update. Note that the 
owner is already trusted and that is one way to maintain the trust after the update. 

Remarks:  

• A RoT shall have a single identifiable owning entity. 

Technology enablers Keystone 

Connected To Other 
Requirements  

• FR.FR.29: Immunity to Software Attacks and Integrity protection: The 
RoT should have immunity to software attacks and integrity protection to prove 
that the ownership is valid.  

Impactful Attacks and 
Mitigation Measures  

REWIRE’s TEE should have immunity to software attacks and provide integrity 
protection.  
Impersonation if the owner key is leaked. As mitigation provide a re-keying mechanism 
or a way to transfer ownership 

KPIs   N/A 

  
  

ID  FR.FR.31 (Mandatory/Optional)  

Title   Platform Measurement Service 

Actors/Components 
Involved  

 RoT, TEE 

Description  

Background: Endpoint devices contain hardware, firmware, drivers, OS, and software 
that affect the integrity and security of the devices and the network within which they 
reside. Thus, a service providing knowledge on the current posture of these endpoint 
devices is of paramount importance. Platform integrity measurement is a core service 
of attestation mechanisms based on which can be decided whether the platform is in 
a correct state or not. Platform integrity measurement is important for building up a 
trusted environment. This service provides the ability to reliably create characteristics 
of the platform by calculating hashes of core and/or data. Current measurement 
methods suffer from high computational complexity and heavy data processing, thus 
they consume a lot of resources and spending too much time. 
 
Description: One of the security services that the SM offers is a measurement service 
of the platform characteristics, in such a way platform users can rely on a report that 
describes the current state of the platform and is emitted by this platform and signed 
by the SM and/or by the device identifier. Τhe SM can prove to a remote client that 
some enclave contains the program expected, and is running on hardware that is 
trusted. This report might be a cryptographic hash with a list of features or services 
provided by the RoT. 
 
Remarks:  

• Integrity measurements may be in the form of cryptographic hash. 

• The underline RoT must act in concert to enable reliable and trustworthy 
measurements. 

Technology enablers Keystone 

Connected To Other 
Requirements  

• FR.FR.27: Trusted Root-of-Trust and secure boot: A trusted RoT will be in 
position to provide valid platform measurement. 

• FR.FR.29: Immunity to Software Attacks and Integrity protection: The 
RoT should have immunity to software attacks and integrity protection to 
provide a valid platform measurement. 
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Impactful Attacks and 
Mitigation Measures  

REWIRE’s TEE should have immunity to software attacks and provide integrity 
protection. 

KPIs  
• Time elapsed for the actual measurement. 

• Light footprint w.r.t power consumption for the actual measurement 
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Chapter 6 

6. REWIRE Use Cases 
 
This chapter describes the three REWIRE use cases along with their corresponding user stories, the use 
case requirements, and the metrics of success (KPIs). This step is necessary in order to define the 
REWIRE MVP. 

6.1 High Level Introduction of the REWIRE Use Cases 

Throughout the project's duration, three distinct Use Cases will be put into action. These Use Cases will 
serve as instruments for assessing the effectiveness of the REWIRE approach across various vertical 
domains. Their deployment will not only offer insights into the overarching implementation but will also 
contribute to the articulation of functional requisites and domain-specific demands that the REWIRE 
technology features must address (see Section 6). In this context, the comprehensive REWIRE design 
will be coupled with the establishment of suitable cryptographic trust anchors within the realms of 
hardware and software-based Roots-of-Trust, along with the deployment of efficient cryptographic 
primitives. This, in turn, ensures the secure and trustworthy operation of digital trust throughout the entire 
lifespan of the devices. The objective is to validate the foundational principles of the REWIRE framework, 
encompassing remote attestation (along with the underlying trusted computing technologies), lightweight 
cryptography, real-time risk assessment, and the secure, auditable sharing of operational threat 
intelligence data flows. These facets are incorporated with policy compliant Blockchain infrastructures 
within the envisioned REWIRE industrial Use Cases. In this context, the Use Cases serve as a valuable 
source of input for shaping the architectural framework of the overall REWIRE platform (referenced in 
D3.1, D4.1, and D5.1). Additionally, the Use Cases serve as the cornerstone for evaluating not only the 
framework itself but also the demonstration scenarios extracted in WP6. 
 
The various use cases will be implemented through a series of scenarios and user stories, as detailed in 
Section 5. These scenarios require the instantiation of the REWIRE platform to function as intended. It's 
important to note that the user stories associated with each use case may not explicitly showcase all the 
underlying REWIRE key technologies and services. In many instances, these technologies operate in the 
background, imperceptible to end users. Nevertheless, the successful execution of these user stories and 
the seamless operation of each scenario hinge on the effective integration of the methods provided by 
REWIRE into the use cases. 
 
Consequently, each user-story scenario will be complemented by a user-story confirmation and an initial 
mapping to the REWIRE technology features, with confirmation of validity contingent on the completion 
of technology requirements for each feature. This preliminary mapping represents the essential REWIRE 
security and privacy-preserving services required to address the critical challenges identified in each 
targeted application domain within REWIRE. These mappings may undergo further refinement in D6.1, 
where the specific evaluation and demonstration plan for each use case will be compiled. 
 
For the initial alignment of each use-case scenario with the technical prerequisites of REWIRE, please 
refer to Section 6. It will serve as a guide, clarifying how the technology readiness for each user-story will 
be gauged and advanced over the project's duration. 
 

Table 6.1: High Level Introduction REWIRE Use Cases 

Use-
case 

Use-case Title Focus on REWIRE feature Responsibl
e Partner 

1 Smart Cities - Smart Cities 
for Empowering Public 
Safety 

Secure software distribution, secure 
onboarding, verifiable attestation, 
runtime analysis, AI-based threat 
detection, attribute-based access 

ODINS 
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control 

2 Automotive - Adaptive In-
Vehicle SW & FW Patch 
Management & Software 
Functions Migration 

Secure software distribution, secure 
onboarding, verifiable attestation 

KENOTOM 

3 Smart Satellites - Smart 
Satellites Secure SW 
Updates for Spacecraft 
Applications & Services 

Secure software distribution, secure 
enrolment, secure onboarding, 
verifiable attestation, AI-based 
misbehaviour detection 

LSF 

 
 
In the sections that follow, each use-case will delineate its reference scenarios, which comprise user-
stories facilitating the shift from current ("as-is") practices to future, secure "to-be" practices and 
deployments, leveraging the REWIRE technology. It is essential to emphasize that the use-case scenarios 
align closely with the distinctive features of the REWIRE technology. Their specific goals are contingent 
on the individual business models pursued by each industrial partner. Consequently, the validation of 
user-stories will confirm the realization of each user-story, made possible through the capabilities of 
REWIRE. 

6.2 Use Case – 1: Smart Cities for Empowering Public Safety 

IoT has shown to be able to offer improved solutions for the modernization of Smart Cities deployments. 

Recently, wireless sensor networks have made it possible for autonomous wireless sensors and actuators 

to monitor city infrastructures while covering enormous regions with fewer base stations. Besides, some 

of these IoT networks provide access in remote areas without cellular coverage (4G or 5G). The high 

expectations placed on the IoT paradigm explain this exacerbated increase in device density, but is this 

paradigm mature enough to bear the responsibility that will fall on it? A look at the current landscape 

shows that there is still room for improvement. 

  
To avoid hindering the advancement of technology and industry, the proliferation of vendor-specific 
ecosystems without compatibility with the Internet must be avoided. Standard defining organizations --- 
such as the IETF or the IEEE) --- are making efforts to encourage the adoption of new working 
methodologies in which common communication protocols and data formats become relevant. This is 
done with compatibility in mind, laying the foundations to facilitate the scalability of the IoT network. 
  
The evolution of this sector is inherent to the adoption of standardization, but there is another aspect that, 
if not put into perspective, can be neglected: security. The limitations of current technology may hinder 
IoT security, but this is no longer an excuse to relegate it to the background. Since IoT will become a 
critical element of human infrastructure in the future (e.g., Intelligent Transportation Systems, Smart 
Agriculture, Industry 4.0), we must ensure that these assets are secure against threats. Any vulnerability 
introduced in today's planning will expose the global production capacity to crippling blows in the future. 
  
In the upcoming Smart City scenarios, several challenges must be faced by state-of-the-art IoT solutions 

and deployments. Compatibility of different vendors' heterogeneous IoT systems and devices for 

example. The usage of several protocols and mechanisms by existing devices, processing units, and 

Decision Support Software (DSS) platforms makes interactions among them extremely challenging. Open 

standardized protocols are essential for enabling interoperability between components and deployments 

using technologies from various vendors. New networked and interoperable ecosystems are replacing 

isolated solutions with vendor dependence in Smart Cities. Furthermore, due to the distributed and 

physically dispersed architecture created by the components and services from various suppliers, they 

are vulnerable to security and privacy risks. Numerous large IoT device deployments and networks have 

increased the number of security attack vectors available. Attackers may take advantage of numerous 

devices which operate for long periods of time without supervision. This specifically impacts administrators 
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who deploy IoT devices without specialized knowledge or tools. In order to strengthen next-generation 

IoT services for the lucrative commercial area of Smart Cities, standardized protocols are essential to 

securely perform activities such as authenticated key exchange and end-to-end object encryption. 

 

6.2.1.   “As-is” Scenario 

Figure 6.1 showcases the common scenario architecture for IoT sensor networks in the context of Smart 
Cities. End-devices are IoT sensors and actuators located on-site, gathering information, and providing 
actuation features on their physical environment. These devices communicate directly through a myriad 
of radio communication technologies, with edge network infrastructure components — e.g., WiFi routers 
or cellular network base stations. These, in turn, forward the collected data through a backhaul network 
— typically the Internet — towards a set of centralized servers which run the high-level data-processing 
procedures and maintain the overall health of the network deployment. Finally, data is gathered by several 
cloud services or applications, which pull the information stored in the centralized servers. 
 

 
Figure 6.1: IoT Smart City communication architecture 

 
Smart City services focus on providing services to the citizens capitalizing on the IoT paradigm as well as 

wireless sensor networks and other ICT innovations running on the cloud. The services that are more 

relevant for a City Hall are those that improve the safety and wellbeing of their citizens. For this reason, 

when applying ICT to form these services, cybersecurity becomes a critical factor due to the potential 

personal or material losses incurred in the case of a successful cyberattack or misconfiguration of the 

system. For these reasons, in this use case of REWIRE, the most relevant public safety services provided 

in the context of Smart Cities are studied — (i) fire detection and suppression systems, and (ii) vehicle 

and pedestrian traffic control systems. 

 
In a fire detection and suppression system, end-devices are connected to several temperature and air 
sensors that continuously monitor their physical environment in order to raise an alarm when fire or smoke 
is detected. In this event, a signal is sent to a centralized platform — typically managed by the Firefighting 
services — that is warned of the event. In some instances, additional fire suppression measures can be 
activated on site, such as audible and light alarms or fire sprinklers. 
 
In vehicular and pedestrian traffic systems, some facilities are put on-site in order to improve traffic 
efficiency without risking the safety of citizens. For instance, in a pedestrian crossing with traffic lights, a 
button can be pressed to request crossing. Typically, the programmable logic controllers installed in cities 
manage several different traffic lights and crossings nearby. These controllers do not have a fixed logic 
that runs 24h but may support features such as scheduling events that prioritize traffic in certain directions 
or reacting to external events, such as vehicle detectors through magnetic spires under the asphalt. 
 
In both aforementioned cases, devices are deployed without human supervision, and can be manipulated 
or maliciously tampered. If the tampering goes undetected, devices with network connectivity can be 
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accessed remotely by the attackers at a later date, going unnoticed by the network administrators. 
 
Regarding security, most deployments rely on both vendor specific security technology, and end-to-end 
security mechanisms at application level. Depending on the technical specifications of the end-devices 
and their quality requirements, the devices can support only certain security protocols. Mostly, the 
selection is predetermined by the computational capabilities of the device, as well as the aggregated 
network bandwidth available — larger networks concentrate on saving bandwidth over QoS for scalability 
purposes. 
 
However, despite the adoption of such security measures, the attack surface of IoT devices remains wide, 
leaving room for attackers to compromise critical IoT infrastructures. We need to consider that IoT devices 
nowadays are critical components that may affect safety-critical environments. Thus, it is of paramount 
importance to seek solutions that will minimize the attack surface of IoTs and push forward the security 
and safety by-design concept. 
 
Nowadays, the infrastructure usually consists of ad-hoc solutions built around legacy devices that have 
been given connectivity through the installation of IoT gateways. In rare cases deployments are mature 
enough to be based on standardized technologies as it is common to find infrastructure based on 
proprietary technology, which hinders seamless connectivity. This produces systems with very large 
attack surfaces due to the large number of devices and impracticality of installing newer ones.  

 
Device onboarding in Smart Cities ecosystems 
 
Onboarding is a process in which new users or devices are added to a system and given access to its 
features and resources. In the context of authentication and authorization, onboarding refers to the 
process of verifying the identity of new users and granting them access to the system's resources based 
on their level of authorization. 
 
During the onboarding process, devices are typically required to provide some form of authentication, 
such as a username and password, or more advanced methods such as public keys, to prove their 
identity. Once their identity is verified, the device is assigned an appropriate level of authorization based 
on their role or permissions within the system. Thus, based on its role on the network an on–boarded 
device may be given access to higher or lower privilege resources.  
 
Within the context of Smart Cities, the onboarding typically happens whenever the device is deployed on-
location the first time, or when the device ownership switches administrative domains — e.g., when a 
company merger happens, the new company policies may require that the devices obtain the secure key 
from a different endpoint. Additionally, installation technicians have to often deploy large amounts of 
devices in one sitting to save costs, thus, onboarding processes are expected to be scalable and support 
up to hundreds or thousands of devices deployed in the same day. Overall, device onboarding is a tedious 
process which is performed manually with low level of automation. 
 
Figure 6.2 shows the typical onboarding scenario, which is split in two different stages. First, during the 
Authenticated Key Agreement (AKA), devices exchange messages with an authentication server over a 
non-secure channel, which is often done using lightweight crypto — e.g., AES-128. Once the procedure 
is finished, both endpoints derive a shared symmetric session key. Then, the onboarding is considered 
finalized. Next, during the regular life-cycle operation of the device, both ends employ the obtained key to 
protect data.  
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Figure 6.2: Smart City Secure Device On-boarding 

 
Misbehaviour Detection in Smart Cities 
 
Collaborative Threat and Misbehaviour Detection refers to a technique for detecting and mitigating 
security threats and undesirable behaviour in distributed systems, such as online social networks, cloud 
computing systems, or peer-to-peer networks. The approach involves leveraging the collective 
intelligence of a community of users to identify and address potential security threats and misbehaviour. 
IoT deployments still count on expert users appointed to monitor the overall status of networks. These 
engineers trust their knowledge about device behaviour, as well as their domain on network flows. 
Unluckily, while somewhat reliable, this approach is not scalable and lacks objective criteria that ensure 
the correct recognition of anomalies. 
 
During the design stage of the application and business vertical logic, the development and data flows of 
IoT Smart City devices are relatively predictable. Hence, developers know in advance the expected 
communication and behaviour patterns that devices must follow. By employing this information, systems 
can more effectively detect and respond to security incidents that may be difficult to identify through 
traditional security measures.  
 
Over the air updates and device reconfiguration in Smart Cities 
 

 
Figure 6.3: Smart City FUOTA scenario 

 
A typical Smart City firmware update over the air (FUOTA) scenario is depicted in Figure 6.3. Whenever 
a new version of the firmware for end-devices is ready to be rolled-out, first, a purpose-specific service, 
with the appropriate authorization, sends the new firmware version to the centralized server through 
external APIs (1), indicating to which devices this must be distributed. Next, the Centralized servers of the 
Smart City deployment trace a new route for the firmware to be transmitted and it is sent through the 
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backhaul network towards the radio edge communication components (2). Finally, the firmware is 
transmitted to the end-devices through the employed radio access technology (3). The end-device checks 
and validates the firmware using end-to-end security mechanisms. 
 
Currently, commercial solutions seldom provide any sort of verification or attestation that the FUOTA 
procedure has proceeded securely and successfully. Typically, after an update, the device will not send 
warnings or acknowledgements that the FUOTA took place, and it is implicit when receiving the expected 
business logic application data that the update took place. 
 

6.2.2.  Scenario’s Challenges and Needs from REWIRE 

Given the analysis of the previous section on the “as-is” state of the smart cities' ecosystem, we highlight 
below the challenges and needs that should steer the REWIRE developments.  
 

o Validation of updates: End-devices are installed on-site without regular human supervision. 
When performing updates over the air, there are no current mechanisms that protect the device 
against physical attacks or report procedure status to the administrators. This means that the 
firmware update procedure is a particularly sensitive moment in the device's life cycle. In addition, 
there are no guarantees that the firmware which is being deployed is free of vulnerabilities. Thus, 
over the air updates on multiple devices may result to a smart city environment with a wide attack 
surface.  

o Lack of authentication of the SW/FW update origin: End-devices commonly trust the 
administrative authority of the components connected to their network domain. Thus, when a 
signal is received to start the firmware update procedure, no further checks are performed, and 
validity is assumed by the device. This means that unauthorized users can trigger firmware 
updates without the consent of the legitimate network administrator and program malicious 
firmware. Thus, authenticated and secure communication is needed to guarantee the delivery of 
the updates.  

o Post-management of updates: Within the Smart-Cities Scenarios, in the Critical Infrastructure 
subset (.i.e., IoT systems managing infrastructure considered essential for the safety of the 
population) it is important to ensure the integrity of the entire deployment, therefore it is not 
acceptable that during an update some sensors unexpectedly malfunction — e.g., a traffic light 
presenting an unexpected behaviour after an unsuccessful update will most probably cause an 
accident. This is a problem as the FUOTA mechanism do not have a status report procedure to 
inform the administrators. Therefore, it is needed to ensure that the updates reach their 
destinations without any data-loss, log any update-related events, and monitor the stability of the 
devices after they have been updated. 

o Threat detection based on devices’ behaviour analysis: While sensor-related technology 

continuously improves over the years, due to their electro-mechanic nature, it is unavoidable to 

experience some casual mishappens. E.g., a faulty temperature sensor might report false 

readings, or due to being accidentally hit by pedestrians, wildlife, or vegetation. In those instances, 

measurements typically produce outlier values or trigger excessive bandwidth due to event-driven 

measurements (e.g., physical parameter over certain threshold). Security experts monitoring the 

deployment might interpret these anomalies as a threat and raise a false alarm. A combination of 

these false alarms might impose an administrative overhead on the deployment owners. 

Mechanisms to tell apart device faults, actual hazards, or malicious data corruption are highly 

needed. 

o Device integrity assurance: Devices are located in remote places and are unattended, making 
it difficult to ensure the system integrity and operational assurance. Therefore, there is a need for 
robust security mechanisms that can infer the correct status of the device to guarantee its integrity, 
especially when these are destined to operate in the context of safety critical services. 

o Traffic analysis capabilities for malicious payload: Even if we ensure that updates are 
launched from legitimate agents in our network, there is still a risk that malicious entities gain 
access to one of the SW/FW distributor nodes and adjust their behaviour to distribute malware. 
To prevent compromised devices from infecting the network, it is necessary to apply authentication 
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and integrity mechanisms on traffic payloads. 

o Zero Trust Onboarding: Due to the large scale of IoT deployments, it is common to find 

administrative domains that manage hundreds or even thousands of devices in a single radio cell. 

Additionally, these devices have a typical life cycle of several years of operation. During that 

period, it is possible that the network administrators install different network infrastructure 

elements — e.g., to improve QoS, or because devices face power blackouts or intentionalfallback 

deactivation for maintenance. Hence, the devices will attempt to connect to the network through 

this newly installed or recently discovered equipment. For this reason, devices are considered as 

nomadic — i.e., although they are not mobile in essence, occasionally they may connect to other 

infrastructure network components. This presents a challenge since devices may come and go 

into the deployed network. Current market solutions relapse into (re)joining the network in case of 

these events, however, during this (re)join procedure, no further security concerns are taken into 

account — this increases the risk for attacks. 

o Strict onboarding access: Authorization and authentication are performed regardless of the state 
of devices. Currently compromised devices may be accepted in the network. There are no checks 
on the system integrity prior to the onboarding of devices in the network. This lack of security 
checks in the onboarding process can result in compromised devices being allowed into the 
network, which can pose a significant security risk. 

o Protection from data extraction: Most market solutions envision their end-devices in an install-
and-forget fashion. This means that the devices are installed in vast geographical areas by the 
technician and are not supervised by humans. For this reason, attackers may get hold of some of 
these devices and extract data. Therefore, tampering with data might result in leakage of crypto 
material stored in the device. 

o Seamlessly integrable: It is worthy of note that the most relevant criteria for the successful 
implementation of additional security enhancements in any deployment is the seamless operation 
of their devices. As a consequence, the regular business logic of the sensors must not be altered 
by security procedures. Faulty security-related procedures might interfere with the regular 
operation logic (e.g., not taking into consideration the device calibration or accuracy and reliability 
of data). 

 

6.2.3.  “To-be” Scenario 

Given the challenges analysed in the previous section, the smart cities REWIRE pilot for public safety 
aspires to demonstrate and address the aforementioned challenges in the following ways:  

o Validation of updates: Ensuring the security and integrity of the firmware update process 
to prevent unauthorized access or tampering. The FUOTA will be enhanced by the addition 
of SW/FW validation processes based on static and dynamic analysis techniques to 
guarantee that the SW/FW is free of vulnerabilities and implementation flaws. This is 
needed as the current status implies that no validation of the SW/FW update takes place 
prior to the update process. 

o Authentication of the SW/FW update origin: Secure communication channels and 
authentication mechanisms will be employed to ensure that only authorized users can 
perform firmware updates. The FUOTA will be enhanced by the REWIRE side-channel 
resistant authenticated encryption schemes in order to guarantee the security and 
authenticity of the transmitted update. In this way, any update procedure started by a 
component connected to the device network must be authorized only if in hold of the 
needed credentials and crypto to ensure the integrity and authenticity of the update. 

o Post-management of updates: Feedback is vital to ensure the success of widely 
applicated updates and REWIRE addresses this through a continuous monitoring after 
FUOTA events in order to assess end-device’s runtime. The output of these operations will 
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be used to produce claims which will be attested to provide verifiable evidence of end-
devices status. 

o Threat detection based on devices’ behaviour analysis: Detect any outlying values that 
could affect the operational behaviour of devices or the network activity through an AI-
assisted misbehaviour detection mechanism, which will receive as an input 
network/system data and will intelligently detect the potential security threats. 

o Device integrity assurance: Devices must be disposed with the proper attestation 
schemes to provide verifiable claims about the status of its operations. Thanks to these 
security claims (stored on an on-chain storage) REWIRE components will have a verifiable 
data source to keep track of device’s integrity — I.e., correct bootup, onboarding, 
successful updates, etc — or detected potential vulnerabilities and attempts to compromise 
system integrity. 

o Data payload monitoring: In order to differentiate anomalous but legitimate readings from 

readings that have been produced by faulty sensors/devices, it must be possible to directly 

analyse packet’s payload in search for patterns typical of malfunctions or attacks. Captured 

traffic through Secure Oracles Input will be provided through BC infrastructure as an input 

for the continuous training of the AI-assisted misbehaviour detection mechanisms and as 

reference data when requested to perform analysis operations. 

o Traffic analysis capabilities for malicious payload: Traffic transmitted over the network 
when performing updates must have mechanisms to confirm the legitimacy of the SW/FW 
regardless of the reputation of the source node. This is achieved through the use of 
mechanisms such as the TEEs and the data filtering of the Secure Oracles. 

o Strict onboarding access: The architecture of the system must dispose of the 
mechanisms so the access to the onboarding process is strictly managed. Through the 
attestation schemes and the BC infrastructure a secure device enrolment protocol must 
designed to deny the onboarding process to any rogue or comprised device that might 
pose a threat to the network. REWIRE attestation mechanisms in tandem with the 
blockchain infrastructure and the ZTO mechanism will guarantee the security of this 
process. 

o Onboarding with zero knowledge proof: All nodes internal or external must be assessed 
initially during the onboarding to the network, offering verifiable evidence on the secure 
state of the device. After the on-boarding is completed, the agents will be still continuously 
evaluated to check for correct integrity, authenticity. 

o Protection from data extraction: The binaries contained in the device's memory will be 
protected by the TEE and will be executed in the protected and isolated environment. In 
addition, the cryptographic material will be also protected by the TEE, so that to ensure 
that cryptographic keys cannot be extracted from the device. 

o Seamlessly integrable: Attestation mechanisms must be seamlessly integrable into a 
Smart City deployment, so it doesn’t interfere with the network’s activity. 

 

6.2.4.  Reference scenario user stories  

[ODINS.US.1]: As a Smart City System Administrator, I want to perform Firmware Updates Over-the-Air 
(FUOTA) over secure and authenticated communication channels so that to update the FW of end-
devices to avoid technicians to perform the update physically on-site, avoiding high maintenance 
overhead costs. The FW must be free of vulnerabilities prior to the deployment and the end-device must 
be able to ensure the integrity and authenticity of the received FW. 
 

User Story Confirmations: Updates will be validated by the SW/FW validation component of REWIRE. 
If correct and properly attested, the update binaries will be accepted. The status of the validation will be 
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reported back to the administrator. Validated updates will be eligible to perform a FUOTA. After each 
successful FUOTA procedure the device will report its current version to a user-friendly platform where 
the System Administrator can keep track of the updated devices. The update process will be based on 
the use of side-channel resistant authenticated encryption scheme of REWIRE in order to ensure the 
confidentiality and authenticity of the update.  

 
REWIRE Functionalities: To achieve a high level of security in REWIRE, there is exacerbated needs for 
FUOTA features and procedures. 
 

• Validation of firmware will be performed using the SW/FW validation component to ensure that the 
firmware is free of known vulnerabilities and implementation flaws. 

• Use of side-channel resistant authenticated encryption scheme of REWIRE to ensure the 
confidentiality and integrity of the FW update process. The existing SW/FW update service of 
ODINS will be enhanced to work in synergy with the REWIRE artifacts. 

• Isolation code/process which is in charge of performing the firmware update on the device from 
the main current code. Isolation will be based on the qualities of the REWIRE TEE and the use of 
enclaves. 

• Use of REWIRE attestation schemes to ensure the integrity and the correct configuration of the 

deployed SW/FW update.  

• Distribution of the SW/FW update through the Blockchain infrastructure and the Secure Oracles 

and support of different modes of operations, i.e., one-to-one (update of one device), one-to-many 

(distribution of an update to multiple devices simultaneously). 

 

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 
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Figure 6.4: ODINS US 1 Sequence Diagram 

 

[ODINS.US.2]: As a smart city administrator or a security administrator in a Smart City scenario, I want 

to easily and securely onboard new devices and avoid cumbersome deployment procedures that require 

per-device specific configuration. To increase security of end-device’s onboarding I want to attest the 

integrity of the end-device without any trust assumption.  

 

User Story Confirmations: The existing infrastructure will be enhanced with the REWIRE ZTO 

mechanisms to support easy and secure onboarding of devices in smart cities infrastructure, without any 

trust assumption and based on the principle “Never trust, always verify”. The ZTO mechanism will be 

supported by the REWIRE blockchain architecture to be able to manage access to the REWIRE 

infrastructure and to manage security claims issued by the devices. Evidence on the integrity of the system 

will be issued as verifiable presentations and will be used to build trust-aware onboarding mechanisms. 

Onboarding will only be allowed if the device has proved its correct bootup and state.  
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REWIRE Functionalities: To achieve a high level of security in REWIRE, these are the functionalities 
that need to be combined to realise the underlined user story: 
 

• Through the attestation agent, the ZTO process is being triggered based on pre-specified policies. 

The ZTO engages the interaction of the Privacy CA which connects with the MUD profile server 

and the AAA server from the manufacturer domain.  

• The attestation agent is responsible of triggering the process of taking measurements of the device 

resources in order to generate the necessary verifiable credentials which contain the security 

claims for the integrity of the system.  

• The blockchain infrastructure will then apply the trust-aware authentication and authorisation of 

the devices based on the provided verifiable presentations.  

• The interactions with the blockchain infrastructure are facilitated through the secure Oracles which 

handle the authorisation process utilising the specific business logic, as expressed in the 

chaincode of smart contract. 

 

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 

 

 

Figure 6.5: ODINS US 2 Sequence Diagram 

 
[ODINS.US.3]: As a System security Administrator, I want to specific control flow of end-device's critical 
processes through previous instrumentation of the SW/FW to continuously assess the expected/regular 
operating behaviour of the device. The collected evidence will be used to efficiently attest device’s integrity 
in order to raise alarms when devices are not behaving as expected or in a potentially threatening way. 
 



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 117 of 177 REWIRE D2.1 

  

      

User Story Confirmations: The REWIRE attestation schemes will be applied on the devices of the smart 

cities in order to attest in a dynamic manner either static properties of the devices (e.g., the binaries or 

configurations) or the execution behaviour of a critical function. The attestation mechanisms will capitalize 

on the REWIRE introspection artifacts, I.e., the REWIRE tracer which will be in position to introspect the 

execution behaviour of a function based on the hook that have been instrumented by the SW/FW 

validation component. If the attestation scheme detects any deviation from the expected/regular operating 

behaviour, and if determined to be in a potential threat, the REWIRE architecture will inform the system 

administrator though the risk assessment platform.  

REWIRE Functionalities: In order to have an attestable verification of end-device's integrity REWIRE 

must provide: 

• Efficient attestation schemes that can attest dynamically static and dynamic properties of the 
devices and be supported by key restriction usage policies.  

• SW/FW pre-instalment instrumentation, using monitoring hooks, to allow for evidence collection 
of the execution profile of critical functions on the end-devices. 

• Continuous monitoring performed over the device runtime leveraging on instrumented SF/FW and 
the REWIRE tracer.  

• Mechanisms to visualize security events and inform system administrators about the security 

posture of critical functions and devices. The information will be forwarded to the risk assessment 

engine though the blockchain infrastructure and the use of secure oracles.  

 

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 

 

 

Figure 6.6: ODINS US 3 Sequence Diagram 
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[ODINS.US.4]: As a System Security Administrator, I want to be able to detect misbehaviours of devices 
in a scalable manner throughout the scattered deployments of smart cities and increase awareness on 
risks. 
 

User Story Confirmations: The AI-based misbehaviour detection mechanisms of REWIRE will be 

utilized in order to detect misbehaviours in the highly distributed topologies of smart cities. The AI models 

will be fed with data stemming from the devices, through the secure oracles, which will be in position to 

apply data filtering and transformations so that to deliver data to the AI models in the necessary data 

format. The detection of misbehaviours could be an indication for threats, and the REWIRE platform will 

utilize the Risk Assessment framework to visualise the detected events and report on potential risks.   

REWIRE Functionalities: In order to effectively detect and assess security incidents and device 

misbehaviour , REWIRE must provide: 

• AI-based Threat Intelligence solution for analyzing system and network data so that to detect 

patterns of malicious or abnormal activities. The AI-based mechanism should be in position to 

operate over the highly distributed environment of smart cities and have scalable performance. 

• Secure oracles to handle multiple data sources and apply data filtering and data manipulation 

before data is fed to the AI models. 

• On-chain & off-chain data management utilizing off-chain data storage solution and proper data 

query and indexing. 

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 

 

 
Figure 6.7: ODINS US 4 Sequence Diagram 

 
[ODINS.US.5]: As a Security Administrator or external entity/authority I want to audit the security posture 
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of a smart city deployment in a secure and accountable manner. Access to collected data and security 
events needs to be regulated so that only authorised entities should be in position to assess the collected 
data, leveraging on ABAC mechanisms, control External Entities checks on critical operation’s status and 
end-device’s integrity through the centralized ledger. 

User Story Confirmations: External entities must be allowed to perform checks on attested information 

through the BC infrastructure. They will only have access to information that is relevant to its business. 

Access will be controlled through ABAC managed by security oracles. These entities will be in position to 

verify the collected information about the security posture of the devices and will be able to validate the 

verifiable presentations that bear the information of the generated security claims of the devices.  

REWIRE Functionalities: In order to allow External Entities to check on system integrity attestation 
REWIRE needs to provide: 

• Attribute-based access control (ABAC) mechanism empowered by the blockchain infrastructure. 

• Security oracles are able to enforce the ABAC model through the use of smart contracts. 

• On- and off- chain data storage for the collection of threat intelligence data, supported by 
mechanisms that enable data querying and indexing.  

• The generation of security claims in the form of verifiable presentations capitalizing on the 
use of the REWIRE attestation schemes. 

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 

 
 

 
Figure 6.8: ODINS US 5 Sequence Diagram 
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6.2.5.  Metrics of success 

6.2.5.1. Quantitative Metrics  

ID Metric 
Target Value 
Without TEE 

Target Value 
With TEE 

(M)andatory / 
(G)ood to Have / 

(O)ptional 

1 

End-device’s overhead of 

communications due to the adoption 

of REWIRE security controls. 

(e.g., focusing on overhead of AI-based 

misbehaviour detection, attestation 

protocols, I/O for crypto key accessing.)  

<15% overhead <30% overhead M 

2 
SW/FW update critical functionality 
downtime 

< 20 secs <35% overhead M 

3 

Security lifecycle management time 
 
(Including: periodic monitoring of device 
state during runtime, creation of VCs, 
interaction with blockchain)  

<1.5 min <20% overhead M 

4 

End-device's resource usage with 

REWIRE mechanisms in place 

(including the tracer) 

<25% overhead <35% overhead M 

5 

Risk management lifecycle time 

(From the moment of the evidence 

collection until the moment of defining a 

new security policy. Including the 

processing time of adding monitoring 

hooks, but excluding the time for formal 

verification and the manual processes 

undertaken by the admin.) 

4 mins N/A M 

7 

AI-based misbehaviour detection  

(including inferencing mode of the AI 

model and the data processing/filtering 

time in the secure oracles) 

< 800 ms 
<10% (in oracle 

TEE) 
M 

8 

SW update process (1-to-Many 

mode) 

 

(Measuring the time for REWIRE 

security mechanisms (e.g., device 

authentication, access control), but 

excluding networking overhead factors) 

< 600 ms < 25% overhead M 

9 
Zero-touch Onboarding  

(excluding network overhead) 
< 700 ms <20% overhead M 

 

6.2.5.2. Qualitative Metrics  

ID Metric Target Value 
(M)andatory / 

(G)ood to Have / 
(O)ptional 

1 
Trusted communication channels between the 

cloud backend and the smart cities’ devices  
To be supported M 

2 REWIRE Usability and integration To be supported M 

3 
Integrity protection of device configuration and 

behaviour 
To be supported M 

4 Ease of Deployment of a trusted device To be supported M 
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6.3 Use Case – 2: Adaptive In-Vehicle SW & FW Patch 

Management & Software Functions Migration 

Due to the rapidly increasing complexity of automotive software and the evolution of automotive 

technologies, such as autonomous driving (AD), advanced driving assistance systems (ADAS), 

augmented reality, etc., new trends arise in the field of automotive software (SW) and hardware (HW) 

engineering. Automotive industry-driven trends like smart mobility, connectivity, electrification and AD are 

paving the way for new automotive applications with extended needs in SW updates and security. 

  

More specifically, over-the-air (OTA) updates, will be highly important for the future of vehicle connectivity. 

This will allow remote upgrading/fixing of vehicle functionalities, which introduces various benefits to both 

the automotive original equipment manufacturers (OEMs) and the customer/driver. Many recalls are due 

to software malfunctions and this process increases OEM’s repairing expenses [REF-176]. By introducing 

OTA SW updates, recalls are redundant, as the SW will be delivered by the OEM straight to the fleet, 

group or individual cars that need an update/upgrade/bug fix. Some of the basic advantages of OTA 

updates read as: 

• Lower cost: OTA updates do not require the owner to bring the car to the dealership, thus 
warranties are kept intact, and number of recalls is minimized. 

• Frequent updates: OTA updates allow for a higher frequency of updates, thus keeping vehicle 
functionalities always up to date. 

 
Although the advantages of OTA updates are pivoting the industry towards advancing such wireless 
technologies, a new opportunity for cyber attackers arises [REF-177]. SW or firmware (FW) OTA update 
process leaves the vehicle vulnerable to cyber-attacks, such as Man-in-the-middle attack. A potential 
security breach during the update process can put the driver’s life at risk, therefore, the need for securing 
vehicle-to-OEM communication, is of high importance. Besides the attack vector concerning OTA, the 
attack surface is further increased due to the internal SW and HW complexity of modern cars that need 
to facilitate advanced functionalities. Thus, it is crucial to develop security measures and fail-safe 
mechanisms to face potential cyber-attacks (side-channel, spoofing etc.). 
  
The automotive industry currently uses various common and standardised security methodologies, 
followed from most OEMs. Most of these have been integrated within the AUTOSAR framework [REF-
178], a commonly used reference architecture. Additionally, depending on the peculiarities and 
preferences of each automotive system, vendor or OEM, custom security solutions are constantly 
emerging and can further facilitate and improve security, such as communication firewalls and intrusion 
detection systems. Within Figure 6.9 below, we briefly refer to some commonly used security solutions 
within AUTOSAR framework. 
  
AUTOSAR (AUTomotive Open System ARchitecture) is a global development partnership of automotive 
manufacturers, suppliers, and tool vendors that was established to create and promote a standard for 
automotive software architectures. The primary goal of AUTOSAR is to standardise the software 
architecture of Electronic Control Units (ECUs) in vehicles, making it modular and easier to develop and 
integrate software from different suppliers. AUTOSAR achieves this by defining a standardised software 
architecture and interfaces that enable the development of reusable software components that can be 
used across different vehicle platforms. As a widely adopted standard in the automotive industry, it is 
being used to develop software, independent of hardware, for a broad range of automotive applications, 
including powertrain, body, chassis, and infotainment systems. 
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Figure 6.9 AUTOSAR’s available technologies for different versions. Figure adopted by [REF-179]  

There are also OEM/vendor specific security mechanisms which are not relevant to AUTOSAR but are 
gaining momentum in the automotive sector. Firstly, the CAN firewall is a mechanism that can be 
implemented in a Controller Area Network (CAN) bus system to provide protection against unauthorized 
access and malicious attacks. Although a promising strategy, it is not able to fully protect the whole vehicle 
network [REF-180]. Two typical features of CAN firewall are filtering out non-DBC defined CAN frames 
and CAN message period monitoring. Filtering out non-DBC defined CAN frames means that the firewall 
can be configured to allow only the transmission of CAN frames that are defined in the DBC (CAN 
database) file. The DBC file defines the structure and content of the messages that are transmitted on the 
CAN bus. The other capability, CAN message period monitoring, involves monitoring of the period 
between messages to detect any abnormal behaviour. For instance, if a message is transmitted more 
frequently than expected, it could be a sign of a malicious attack, e.g., a Denial of Service (DoS) attack. 
The firewall can detect these abnormalities and take action to prevent further attacks. 
  
Another common security solution is the CAN Intrusion Detection System (IDS) [REF-181] which is a 
software or hardware system designed to monitor CAN bus traffic for suspicious activity or potential 
attacks. Message sniffing is required for the process of capturing and analysing network traffic to identify 
potential security threats. In the context of a CAN IDS, we have the following parts: 

• Message sniffing which involves monitoring of the messages being sent over the CAN bus to 
detect any abnormal or suspicious activity. 

• Message forwarding referring to the process of intercepting and redirecting network traffic from 
one endpoint to another. This functionality could be used to redirect suspicious messages to a 
separate analysis system for further investigation.  

• Payload manipulation refers to the process of altering the content of a message or packet. Also, it 
could be used to modify the data being sent over the CAN bus to prevent a potential attack or to 
gather more information about the attacker. 

  
Development of new security measures for internal and external automotive networks is an active field of 
research, and the need for increased security in smart and connected vehicles of the future keeps rising. 
For example, CAN is well known for its inability to cover security needs of more complex automotive 
architectures [REF-183], and that’s why Flexray, and more recently Ethernet [REF-182], are taking over 
the market. Since the complexity of vehicles is only increasing, such an upward trend will be followed by 
the attack surface of vehicle systems, thus a gap, both in market and literature exists, which needs to be 
addressed by new technologies that ensure functional safety and seamless maintenance. 
 
Hence, the ever-increasing complexity of the automotive stack poses the need for verified SW and HW 
co-designs that can guarantee the assurance-by-design quality, especially when it comes to safety critical 
subsystems of vehicles. Furthermore, as highlighted before, the dynamicity of the automotive ecosystem 
demands for fail-safe operations, making the design of OTA processes and in-vehicle protection 
mechanisms a necessity for guaranteeing the operational assurance and continuity of vehicles’ critical 
systems.  
 

6.3.1.  “As-is” Scenario 

Current automotive electrical/electronic (E/E) architectures follow a “decentralized” architecture, where 
each specific vehicular function is managed from an individual ECU, with a common bus network 
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connecting to various ECUs within the vehicle. This approach has been followed for many years and is 
currently applied on the vast majority of current production vehicles. Typical bus networks are CAN, CAN-
FD, FlexRay and LIN, all in widespread use in the automotive industry. 
 

 

Figure 6.10: Decentralized (left), Centralized Domain (center) and Centralized Zonal (right) architectures. Figure 
adopted by [REF-184] 

This “decentralized” approach presents many drawbacks and challenges [REF-185], primarily on 
scalability and communication. In terms of scalability, with each primary function grouped into a single 
ECU, the total number of ECUs on vehicles today can rise up to 100 ECUs creating severe communication 
dependencies and increased network load. Additionally, different vehicle variants (e.g., EU vs USA, entry 
vs premium models, conventional vs hybrid engine on the same model, etc.) require significantly different 
SW parameterization or functionalities as well as different I/O, HW and peripherals handling. This creates 
a necessity for SW/HW variation on a wide range of ECUs, typically implemented from different Tier1 
suppliers or vendors for the same vehicle, creating significant workload to OEMs. 
  
In light of these challenges, “centralized” ECU network architectures are gaining strong momentum with 
significant number of OEMs/Tier 1 suppliers researching these solutions. In contrast to decentralized 
approach, centralized architectures group more vehicle functions into a single ECU, in order to decrease 
network load and minimize total number of ECUs. As an example, on a centralized approach, powertrain 
functions would be grouped into a single ECU, while a decentralized architecture would have individual 
ECUs for each function (Transmission Control Unit, Engine Control Unit, Battery Management System, 
etc.). A fully centralized approach would have all vehicle functions grouped into a single, “master ECU”, 
with various “Zonal Controller Units” (ZCUs), handling only a very primitive logic to acquire and re-transmit 
sensor/actuation data. 
  
Furthermore, with current automotive trends moving towards connectivity and autonomous driving, the 
increased security needs (e.g., data encryption or authentication of bus messages) create even more 
communication load, which on many cases is unfeasible to implement on the current ECU processors, 
decentralized architectures and network protocols like CAN bus.  
  
For this reason, the automotive industry moves more and more towards higher bandwidth communication 
protocols such as CANFD and FlexRay. While indeed CANFD and FlexRay offer increased bandwidth, 
the problem to some extend remains, while FlexRay also presents significant drawbacks, i.e., each 
communication dependency needs to be known in advance during development. Latest automotive trends 
are moving progressively to Automotive Ethernet, to significantly increase bandwidth and provide a better 
communication medium in which to implement a secure ECU communication [REF-185]. 

  



D2.1 - REWIRE Operational landscape, requirements, and Reference Architecture 

REWIRE D2.1 PU Page 124 of 177 REWIRE D2.1 

  

      

Traditional ECUs typically handle and control a dedicated and conventional mechanical sub-part of the 
vehicle system (engine, brakes, suspension, etc.) that usually does not change or require any significant 
update within the vehicle lifecycle. Thus, SW within those ECUs is typically only on occasion updated, 
usually at a local dealership at each periodical vehicle maintenance primarily through the OBD port, with 
AUTOSAR defining Secure Logging and Diagnostics via UDS services 27 and 29 that can achieve user-
2-device (i.e., dealership tool-2-vehicle ECU) authentication.  
  
In contrast, new automotive functionalities that are expanding towards V2X connectivity, in-vehicle 
augmented reality, user experience, infotainment systems and autonomous driving, by definition would 
require significantly more SW update capabilities. This means that ECU SW is becoming an alive and 
active product throughout the vehicle lifecycle, forcing the need for constant SW updates, either for new 
SW functionalities, parameterization or for bug fixing and vulnerability patching.  
  
As an example, Neural Networks, an integral part of Autonomous Driving systems, are required to be 
constantly trained, updated and tailored for specific edge cases and road environment (urban vs rural 
roads, high density and narrow city streets vs highways, and so on) since the OEMs cannot perform all 
case analysis in advance. Additionally in the context of advanced driver-assistance system (ADAS)/ 
Autonomous Driving (AD), OTA and central server communication is needed to receive new HD (High-
Definition) Maps as the vehicle is driving, something very important for higher levels of driving automation. 
Similarly, in the near future, new maps will be created constantly, depicting a construction zone, new 
traffic signs that have been just installed and many more.  
  
V2X communication is as well of vital importance since vehicle communication with road entities (traffic 
lights, other cars, etc.) will allow transmission of critical information for the safe vehicle operation and 
traffic monitoring. Typical V2X scenarios currently examined from the automotive industry include 
communication between a given vehicle and an adversary vehicle as well as the on-boarding of a vehicle 
(ex. when it is powered-on) to a given OEM fleet network or to a government-regulated network. Such 
communication and vehicle on-boarding presents security challenges since it requires validating or 
authenticating each vehicle upon the establishment of the communication. 
  
Therefore, OTA updates and in general over-the-air communication with road/infrastructure entities is a 
necessity and will be vital for successful and secure ADAS/AD systems operation. Currently, these 
systems are more “hard-wired” within the vehicle or non-present at all, limiting vehicle capabilities. While 
indeed most cars today do not have significant or extended OTA capabilities or have none at all (most 
OTA cases can be found on Infotainment systems, thus noncritical functions/devices), according to Market 
Research Future [REF-186] , the automotive OTA updates market is expected to grow 18% from 2022 to 
2030. As a result of OTA necessities, massive security concerns are emerging, since potential 
vulnerabilities or security weaknesses can significantly impact road safety. 
  
From common standardization perspective, AUTOSAR defines usage of IPsec/TLS for automotive OTA 
updates. Below follows an analysis [REF-187] of an exemplary OTA setup. 
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Figure 6.11: Key components of an OTA system. Figure adopted by [REF-187]  

Generally, the Telematics Unit is responsible for establishing the connection to the OEM server. This unit 
can employ TLS, to secure the communication over the mobile network. Once the secured update file is 
received, it is processed by the Gateway (OTA Manager) through a table which contains information about 
each ECU in the vehicle, including their serial numbers and current firmware versions. This enables the 
OTA Manager to verify the compatibility of the update with the vehicle. 
  
A basic assumption is if the targeted ECU supports firmware decryption and authentication. In such a 
case, the update file can be sent directly from the OTA Manager. However, not all ECUs have secure 
key storage and hardware accelerated security. On such occasions, the OTA Manager needs to 
authenticate and decrypt the update on behalf of the target ECU and then transmit the update over the 
internal network. As a result, OTA Manager plays a crucial role in verifying the validity of an update for 
the vehicle to ensure the consistency and compatibility of firmware across all ECUs in the vehicle and to 
prevent an attacker from installing an older firmware version to exploit known vulnerabilities. However, in 
such cases the communication between the OTA and the corresponding ECU remains unprotected as 
the secure communication, OTA validation and signature verification take place on the OTA Manager and 
not on the actual ECU. 
  
Within a centralized architectural approach, as more and more functions are grouped into a single ECU, 
together with the increased security needs of V2X and autonomous driving technologies, fail-safe 
mechanisms and roll-back or mitigation measures emerge with increased necessity, as each potential 
ECU compromise (primarily due to a security compromise but the concept holds true for safety as well) 
can impact a significantly increased vehicle functionality. Hence, to ensure the continuity of critical 
functions there is a demand for “vehicle functions migration” to alternative, auxiliary or backup ECUs, in 
order to increase the overall system reliability, robustness and security. 
  
While the details, peculiarities and complexities of various proposed “centralized” architectures are indeed 

very extended and a topic of significant automotive research, these fall beyond the scope of REWIRE 

project. Therefore, the automotive use case will focus into exploring this concept on an exemplary 

centralized architecture.  

  
Given the analysis of the current state of the automotive domain and KENOTOM’s vision for integrating 
secure solutions which will enhance the security and operational assurance of safety critical automotive 
operations, the next section defines the challenges that REWIRE project needs to consider. 
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6.3.2.  Scenario’s Challenges and Needs from REWIRE  

Given the description provided in the previous section, it becomes clear that despite the benefits of the 
“centralised” architecture, several challenges emerge.  
  

• Increased attack surface: In general, autonomous vehicles have more exposed entry points for 
malicious cyber-attacks, due to their increased complexity [REF-188] along with the different type 
of sensors. Connected Autonomous Vehicles (CAVs) will be even more vulnerable from a security 
perspective, as more electronic equipment is needed for implementing systems like ADAS, LKAS 
etc. So, there is necessity for additional security mechanisms to achieve operational assurance 
on vehicles. 

• Validation of SW/FW updates: Since the automotive use-case is investigating OTA SW/FW 
updates, it is crucial that the update package will remain secure. The SW and FW updates are not 
initially validated. This means that updates that may be massively applied to the vehicle may 
render the whole infrastructure vulnerable and can potentially impact the safety. Based on the 
Upstream’s research reports [REF-189] about the automotive cyber incidents occurred in 2020 & 
2021, 87.7% threats are related to vehicle data/code, 50.8% potential vulnerabilities that could be 
exploited if not sufficiently protected or hardened, 24.1% threats regarding back-end servers 
related to vehicles in the field, 4.3% threats to vehicles regarding their update procedures. Lastly, 
the update process should be followed by scrutinizing each update.  

• Regulatory and standardisation compliance for OTA and confidentiality of 
communications: Autonomous vehicles are subject to regulatory frameworks and safety 
standards. For instance, OTA updates need to comply with industry standards, which may include 
specific validation and certification processes. As it is mentioned in SAE J3061:2016, 
"Cybersecurity Guidebook for Cyber-Physical Vehicle Systems", encryption should be used to 
ensure the confidentiality of the OTA update package. These standards could be utilized to 
establish best practices and guidelines for ensuring the robustness and resilience of autonomous 
vehicle systems by covering areas such as functional safety, risk assessment, secure 
communication protocols, software development processes, and vulnerability management. Also, 
regulations may differentiate per country, but they cover areas such as emissions regulations, 
cybersecurity requirements, data privacy, and more. That is, apart from the SW/FW update per 
se, we need to find a way to ensure that a transmitted SW update is confidential, and it has not 
been tampered by any external entity that may interfere with the channel. 

• Limitation of bandwidth: Limited bandwidth or slow data transfer rates (i.e., CAN bandwidth 
1Mbps) can restrict the security options. Ensuring efficient data transfer is crucial to minimise 
update time and optimise the user experience. 

  

The aforementioned challenges, combined with the current status of the automotive landscape, lead the 

following needs: 

  

• Need for SW/FW update for safety critical functions: Automotive systems rely on SW/FW to 
control various functions, including engine management, braking, steering, and driver assistance 
systems. Updates can address security vulnerabilities, fix bugs, and improve the performance and 
functionality of the system. However, updating safety-critical functions poses unique challenges 
due to the potential risks involved. One of main challenges is to ensure that the update does not 
introduce new vulnerabilities or affect the safety and reliability of the system. This requires 
extensive testing and verification to ensure that the update is compatible with the system's 
hardware and software components, and that it meets the required safety standards. 

• Need for adoption of automotive ethernet: The limited bandwidth of the CAN bus is a bottleneck 
which may lead to latency issues and restrict the ability of the system to handle higher data rates 
required for ADAS, autonomous driving and in-vehicle infotainment systems. To address this 
challenge, the adoption of Ethernet-based communication protocols is mandatory. Automotive 
Ethernet offers higher bandwidth, lower latency, and greater flexibility than the CAN bus. It can 
support data rates of up to 10 Gbps and enables the integration of various communication 
protocols, such as audio, video, and data transfer. In addition to higher bandwidth, automotive 
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Ethernet also offers improved security features, including encryption and authentication, to ensure 
the confidentiality and integrity of data transmitted over the network. This is essential for safety-
critical systems, where any interference or malicious attacks on the communication network can 
have severe consequences. 

• Need of function migration: When an ECU is compromised or is misbehaving, there is the need 
to ensure the continuity of the critical services. The compromised functionality should be migrated 
to a neighbouring back-up ECU. In this way, we can guarantee the reliability and the continuity of 
safety-critical services. 

• Need for advanced and formally verified crypto: To guarantee the confidentiality and the 
authenticity of SW/FW updates, there is a need for strong and formally verified cryptographic 
schemes. The update package needs to be signed using a cryptographic key, and the vehicle 
verifies the signature before installing the update to ensure that it has not been tampered with 
during transit. 

• Need for verifiable evidence advocating the secure state of vehicles: In direction of having 
continuous and trust-aware authorization of vehicles, the security status of critical functions of the 
vehicles needs to be validated, especially when those belong to collaborative fleets where 
information is exchanged in the context of critical services like the autonomous driving case. Such 
a solution can facilitate the V2X communication needs for validation of the security state of each 
vehicle as it is on-boarded to either a common fleet network or to bi-directional communication 
with another vehicle. V2X communication needs to be supported by advanced solutions which can 
validate the security state of each vehicle as it is on-boarded to either a common fleet network or 
to bi-directional communication with another vehicle. 

 

6.3.3.  “To-be” Scenario 

As mentioned above, current as-is of automotive E/E architectures pivots industrial trends towards 
centralization. In this section, the automotive use-case specific exemplary setup, which also includes 
REWIRE artefacts, will be discussed. Along with that, some possible configuration options will be 
presented, all of whom will serve the purpose of showcasing REWIRE capabilities through a demo. 
Furthermore, REWIRE framework security proofs and ECU state monitoring will be discussed. 

On this exemplary setup, Zonal Controllers are serving the role of collecting and performing an initial 
primitive processing on data from a given sub-network of low-level ECUs. These ECUs can act as lower 
level, simplified “smart actuators” for example VCM (Vehicle Control Module) handles to operate the 
vehicle engine, or to collect brake pedal position, with the ADAS ECU used to collect perception data. 
Following that setup, the total computational and functional vehicle tasks could be performed on a higher 
level, “master ECU”, that would serve as a central vehicle computer, or even as a server to off-load the 
computational tasks on the cloud.  

A potential security attack on a given Zonal Control Unit 1 could compromise a significant portion of the 
underline sub-system posing increased problems in comparison to a decentralized architecture. To 
compensate that, REWIRE proposes that ZCU1 functionalities could be migrated to a neighbouring ZCU2, 
or to the “centralized”, High-Performance Computer (HPC) as well, to either maintain some vehicle 
functionality or to handle the deployment of a fail-safe mechanism. Current vehicles do not have such a 
concept in any kind of form, since typically, if a specific ECU is compromised (e.g., system malfunction), 
safety SW intervenes to drive the system to a “minimum”. ECU safety SW intervention though could be 
also compromised at a successful or extended security breach.  
  

In order to perform a successful migration of functions, access to the underline network would be required, 
which is by itself a complex topic to generalize. Since most vehicle ECUs or potential ZCUs serve a 
specific purpose and the cabling itself is quite extended on vehicles, not all ECUs have access to all other 
ECUs or specific components, sensors and actuators. Therefore, the migration of the functionality of a 
given ZCU 1 presumes that the alternative ZCU 2 (which is supposed to undertake the computational and 
functional load of the compromised ZCU 1) actually does have access to the needed network 
infrastructure of ZCU 1. It is in any case beyond the scope of the project to concretely conclude a realistic 
setup across multiple vehicle functions or network architectures and therefore this solution can only be 
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examined on a proof-of-concept basis within REWIRE. Nonetheless, accessing the underlying network 
could be facilitated through a variety of potential solutions. A first solution would be to use an auxiliary 
cable harness connecting ZCU 1 and 2, providing access to an isolated I/O interface with the 
corresponding sub-network (Figure 6.12: Option 2). Alternatively, if ZCUs hold significant portion of 
calculation load of vehicle functions (acting as “Domain controllers” for all sub-functions of a vehicle 
system such as Powertrain-Motion-Propulsion domain, Chassis-Advanced Driving-Comfort domain, etc., 
a variation of centralized architectures) it could be argued that each one of them could have an isolated 
resource (e.g., extra cores or processors) dedicated to undertake the additional work-load of the migrated 
functions (Figure 6.12: Option 1). 

  

Figure 6.12: Options 1 and 2 on connectivity between Zonal Controllers 

In Figure 6.13, a sketch of the demo setup along with its components is presented. Zonal/Domain 

Controller 1 (ZCU1) is the main on-board REWIRE edge device that will communicate with REWIRE 

artefacts. ZCU 2 is the second REWIRE-specific board (most likely GENESYS II board will be used) that 

will demonstrate migration of functions. Migration will happen by direct connection of ZCU1 and ZCU2, 

through the REWIRE TEE of each ZCU, by establishing a security key between the TEEs. Security of the 

migration will be independent of how secure the physical network is, since REWIRE TEE will undertake 

this task. This demo setup (Figure 6.13) could be thought of as part of a hypothetical vehicle-internal 

architecture as depicted in Figure y. In this architecture, ZCU2 would be primarily responsible for a 

different domain (ECU2, ECU3, ECU4) than that of ZCU1 and could potentially hold the migration load. 

In Figure y, some exemplary signals of a theoretical ADAS application are also depicted. 
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Figure 6.13: Automotive use case demo setup  

 

Figure 6.14: Exemplary vehicle network including automotive use case demo (example 1). 

If still, no option to migrate the compromised vehicle function itself would be possible, the concept even 
so has validity, to act as a deployment of a fail-safe vehicle reaction. In this case, although no functionality 
migration is possible, transferring and deploying the compromised SW on a neighbouring controller would 
allow the deployment of the fail-safe mechanisms of the attacked system itself (driver warnings, 
emergency braking, V2X communication, etc.), but on a “clean” and secure environment. Such an 
exemplary case is depicted below. 
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Figure 6.15: Exemplary vehicle network including automotive use case demo (example 2). 

 
On the setup illustrated in Figure z, an exemplary V2X communication is depicted, with the High-
Performance Computer (HPC) receiving V2X data (adversary vehicle speeds, positions, etc.) and 
transmitting them to ZCU1 (Zonal Controller 1) for subsequent usage at the ADAS ECU. Similarly, ZCU1 
handles transmission of speed, motion, etc data of the vehicle itself to the HPC for informing adversary 
vehicles. Here, we depict a potential successful compromise on ZCU1 or/and a portion of the underlined 
ECUs (crossed-section area). Such a case could happen for instance through a successful manipulation 
of network messages on VCM or ZCU1 to constantly accelerate the vehicle. Upon detecting such an 
abnormality, a function migration to the neighbouring ZCU2 is deployed and due to an inability of gaining 
access to the engine itself, an appropriate message is transmitted to the adversary vehicles, to notify for 
the malfunction (“Vehicle compromised. Yield crossing priority, if needed”). The “X” crossed section over 
the ZCU1, in the figure, implies that ZCU1 is detected as compromised, and the function migration will be 
triggered.  
  
For the Automotive Use Case and in order to minimise overall complexity of the needed HW, SW and 
implementation effort, REWIRE will utilize and deploy an exemplary setup, adopting a REWIRE-specific 
board (most likely GENESYS II board), as well as NVIDIA DRIVE ORIN as the ADAS ECU which will be 
responsible for an ADAS  related function (Lane Keeping System or Adaptive Cruise Control). More details 
on the setup of the demonstrator will be reported in REWIRE D6.1 Integrated framework (1st release) and 
use case analysis.  
  
Exemplary investigation on possible security attacks specifically for the Automotive use case demo (Lane 
Keeping System or Adaptive Cruise Control) could be optionally examined. Such automotive relevant 
specific attacks are threats to the internal vehicle communication integrity or attempts for manipulation of 
ADAS vehicle functions that can alert the signature of critical binaries or configuration files. Therefore, the 
automotive demo application could potentially examine ways of detecting such attacks. Depending on the 
overall complexity of the implementation, this exemplary investigation will be optionally explored either by 
using the already described REWIRE attestation schemes, or by extending REWIRE framework by 
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applying simple logic defence mechanisms for such ADAS or automotive detection of security breaches. 
Since in any case the specific automotive peculiarities fall beyond the scope of REWIRE project, if 
implementation of such detection logic is significantly complex, then on an exemplary case such scenarios 
could be assumed to be detected and taken as-is for the sake of demonstrating the REWIRE proposed 
counter measures (i.e., SW updates and vehicle migration) on top of the already defined REWIRE security 
use case. Specific attack cases will be explored and documented in the context of the WP6 deliverables.  
 
The above-mentioned testbed setup (see Figure 6.13), will be used in order to enable the evaluation of 
core REWIRE solutions and help KENOTOM to meet its future objectives via: (i) Validation of a system’s 
components, (ii) SW/FW update to patch vulnerable components, (iii) Attestation policies with key 
restriction usage, (iv) Attack mitigation through TEE state migration. 
 

6.3.4. Reference scenario user stories 

The validation of the to-be scenario that was detailed in the previous section will be based on the following 
User Stories. The entirety of the testbed and the REWIRE envisioned functionalities will be put in the 
context of the following stakeholder user stories that will guarantee that the experimentation and 
evaluation of the REWIRE mechanisms will take place with the boundaries of realistic cases that cover 
the needs of end users, while in parallel cover the whole spectrum of the functionalities to be validated, 
following the objectives of the project. 
  

[KEN.US.1]: As an OEM system administrator, I want to ensure security on over the air (OTA) software 

updates, without the need for vehicles’ on-site service. 

  

User Story Confirmations: The SW update package will be checked in terms of integrity, confidentiality 

and authenticity using the secure mode of operation of the AES designed in the context of REWIRE. The 

SW update will be admitted only if it carries the appropriate security credentials, defined by the REWIRE 

security framework. Failure in any authenticating process, will be reported back to the administrator, so a 

cyber-attack or a malfunction can be detected quickly and eventually prevented. This user story will 

demonstrate a secure OTA update on a device in a 1-to-1 manner, i.e., the SW provider will perform the 

update directly to one vehicle. Prior to the deployment of the SW update the REWIRE frameworks must 

guarantee the update is free of vulnerabilities capitalizing on the SW/FW validation processes.  

  

REWIRE Functionalities: In order to achieve a high level of security in REWIRE, there are exacerbated 

needs for OTA features and procedures. 

  

• Differentiate the code in charge of performing the firmware update from the main current code. 
Thus, code isolation is needed using REWIRE TEE.  

• Encryption and authentication are needed for securing the OTA update process. The side-channel 
resistant mode of operation for the authenticated encryption AES scheme of REWIRE will be used.   

• Attestation mechanisms are needed to enhance the security and operational assurance by 
validating the state of the updated component.  

• If attestation fails, the device will transmit the status of the failed attestation to the risk assessment 
component of REWIRE to increase administrator awareness on possible attacks. 

• Only sanitized update packages will be deployed, i.e., the update will pass through the SW/FW 
validation processes to be checked for common vulnerabilities and implementation flows. 

• The update process will be “one-to-one" with respect to the communication of the administrator 
with each vehicle, since every vehicle has its own keys and attestation properties. 

  

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 
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Figure 6.16: ΚΕΝ US 1 Sequence Diagram 

 

[KEN.US.2]: As an OEM System Administrator, I want to ensure that ECUs are continuously checked 

in order to assess their operating behaviour, and trigger alerts upon abnormal behaviour or security 

incidents. When an ECU detects suspicious activity, relevant stakeholders should be notified promptly to 

initiate appropriate response measures. 

User Story Confirmations: When an ECU is compromised, the security thread will be analysed from the 

OEM (technicians/engineers) in order to deploy a SW fix or patch as counter measure on the attacked 

car or on other cars of the same brand/model to prevent subsequent attacks. To achieve this goal, 

REWIRE attestation mechanisms will be used in order to check the integrity of the critical system and 

identify potential compromise of the system. The REWIRE framework should be in position to increase 

the awareness of the responsible engineers. 

REWIRE Functionalities: Failed attestation of the ECU will trigger an alarm that would inform the 

responsible engineers of the potential compromise or malfunction, to deploy SW/FW OTA updates to the 

corresponding system. The failed attestation event will be forwarded to the risk assessment component 

of REWIRE through the secure oracles. 

  

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 
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Figure 6.17: ΚΕΝ US 2 Sequence Diagram 

 

[KEN.US.3]: As an automotive engineer, I want to ensure that in the case of a security breach on a 
given ECU, partial or full vehicle functionality is maintained. 
 
User Story Confirmations: When an ECU is compromised, a neighbouring ECU will be dynamically 
selected for function migration in order to mitigate the attack. A scenario that includes a compromised 
ECU will be demonstrated to test the REWIRE functionalities. Capitalising on the capabilities of REWIRE 
customisable TEE (based on keystone), mitigation actions will take place to enable the migration of the 
state of a critical function to another TEE in the vehicle.  
 
REWIRE Functionalities: REWIRE selects an appropriate neighbouring ECU with available 
computational resources. Safety critical functions are migrated to the neighbouring (non-compromised) 
ECU. The migration operation is described as part of a policy in the REWIRE stack, capitalising on the 
policy enforcement mechanisms of REWIRE. 
  
The following diagram illustrates the workflows which will take place among the various REWIRE 
components in order to realise the user story. The diagram is based on the components as those have 
been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 
and the respective interactions will be updated as the project progresses.   
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Figure 6.18: ΚΕΝ US 3 Sequence Diagram 

 

[KEN.US.4]: As an OEM system administrator I want to be able to ensure that only vehicles which are 

in a valid state can join and operate in a collaborative manner in the infrastructure (e.g., OEM fleet 

network, government-regulated road network, etc). Undisputable evidence needs to be provided for the 

secure state, while trust-aware authorisation needs to be performed in order to be able to exchange data 

in the context of the collaborative infrastructure. External entities should be in a position to verify the 

evidence for certification purposes. 

  

User Story Confirmations: When a vehicle, external to the collaborative vehicle network, attempts 

connection to it, it should be attested for having a correct state before being able to exchange any 

information with the administrator or other vehicles connected to the network. Zero Trust On-boarding 

(ZTO) mechanisms of REWIRE will be exploited in order to regulate the process of a vehicle being 

onboarded to the network. In addition, all the evidence that advocate the security state of a vehicle will be 

logged in the blockchain infrastructure in order to enable the certification of safety critical operations. 

REWIRE Functionalities:  

• The ZTO mechanism of REWIRE will manage the onboarding process of a vehicle in the network.  

• Security claims on a vehicle’s security state will be generated in the form of verifiable 
presentations.  

• Data collection and interfacing with the blockchain infrastructure will be facilitated by the Secure 
Oracles 

• The REWIRE Attestation schemes will be exploited in order to take measurements of the security 
state of critical components of the vehicle.  

• Use of predicates over verifiable attributes will be explored in the context of this use case.  
 

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 
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Figure 6.19: ΚΕΝ US4 Sequence Diagram 

6.3.5. Metrics of success 

6.3.5.1. Quantitative Metrics  

 

ID Metric 
Target Value 
Without TEE 

Target Value 
With TEE 

(M)andatory / 
(G)ood to Have / 

(O)ptional 

1 

Time needed to perform Zero Trust 

On-boarding (ZTO)  

(with and without the consideration of 

the REWIRE security mechanisms) 

< 10 sec <20% overhead 

M 

2 

SW update process (1-to-1 mode) 

 

(Measuring the time for REWIRE 
security mechanisms (e.g., device 
authentication, access control), but 
excluding networking overhead factors) 

< 200 ms <30% overhead M 

3 

In-vehicle platform selection for 
migration 
 
(including the overhead of attestation 
prior the migration) 

N/A <150 ms M 

4 
Critical and non-critical function 

migration 
N/A True M 

5 
Disabling old version of an 

application  
N/A True M 

6 

Critical function downtime during 

migration 

 

N/A <1 sec M 

7 

Function successful migration 

evidence generation 

 

(extract evidence and notify OEM) 

N/A < 10 secs M 

8 
Security lifecycle management time  
 
(Including: detection of a device 

<5 sec <10% overhead  
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compromise, creation of VCs, alerting 

administrator) 

 
 
 
*Some target values are hard to be set a priori, since they are dependent on various application 
parameters, such as available computational resources, size of the SW package, number of compromised 
components, size of migrating functionalities, connection speeds etc. The KPIs may be refined in later 
stages of the project. 
 
 

6.3.5.2. Qualitative Metrics  

  

ID Metric Target Value 
(M)andatory / 

(G)ood to Have / 
(O)ptional 

1 
Trusted communication channels between the 

cloud backend and the vehicles  
To be supported M 

2 REWIRE Usability and integration To be supported M 

3 
Integrity protection of ECU configuration and 

behaviour 
To be supported M 

 

 

6.4 Use Case – 3: Smart Satellites Secure SW Updates for 

Spacecraft Applications & Services 

Up until now, each satellite had a specific task and was equipped with dedicated hardware and sensors 
to fulfil the requirements of the mission. However, it seems that this is about to change. With the increased 
capabilities of modern satellites and their hardware, the notion of the satellite as a service is starting to 
be realized. In this scheme, a satellite carries various sensors and extra hardware that can be used by 
various customers on demand. Instead of launching a dedicated satellite for a specific mission, customers 
can acquire processing time and access to specific sensors on an already orbiting satellite. This minimizes 
development costs and time as well as reducing the risks that commonly come along with a satellite 
mission (e.g., launch failure, deployment failure, failure during in orbit, etc). However, this space access 
model raises some serious challenges too. The satellite processing platform should ensure that the 
applications from various customers running on-board do not jeopardize the well-being and the availability 
of the satellite (e.g., misuse of the communication interfaces, excess power consumption, etc.), the 
mission itself and/or other applications that running on board. Security issues are also a concern as data 
of applications may be confidential and should not be accessed or corrupted by other applications running 
concurrently.  
 
The majority of the satellites, especially CubeSats operate in Low Earth Orbit (LEO). This means that a 
ground station has only a limited time window to communicate with the satellite. Depending on the orbit 
altitude, the frequency and the capabilities of the ground station this time window can be in the order of 
few minutes. CubeSats normally are equipped with RF interfaces of limited bandwidth, resulting to a 
reduced data rate between the ground station and the satellite. Therefore, there are cases where a 
firmware update on a satellite component cannot be transferred on a single pass above a ground station. 
On top of that, a subsequent pass in the view of the ground station may only be available after a few days, 
significantly delaying the completion of the SW update procedure. 
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6.4.1. “As-is” Scenario 

 
To deal with these aforementioned issues, LSF utilizes the SatNOGS, which is a network of multiple 
ground stations in different places across the globe, all connected through the cloud infrastructure of LSF. 
The architecture of the SatNOGS system is given in Figure 6.21 and enables operators to communicate 
with satellites through the distributed infrastructure of the ground stations. Having multiple ground stations 
in different places leads to an increased number of communication windows, thus increasing the 
availability of the satellite. During a SW update, a ground station at the end of the communication window 
can inform the backhaul infrastructure regarding the amount of data successfully sent to the satellite and 
which data remain to be sent for the finalization of the firmware update. The service that orchestrates the 
update can then find the next ground station that has an available communication window and send via 
internet the SW file that needs to be sent, as well as session information regarding the amount of data 
that have to be transmitted (see Figure 6.20). 
 

 
Figure 6.20: SatNOGS multiple ground stations connected through the internet 
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Figure 6.21: SatNOGS architecture 

 
Figure 6.22: Component diagram 
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Currently the CubeSats and PocketCubes of LSF, operate on the Zephyr-RTOS [REF-190]. This RTOS 
does not provide any secure OTA functionality. To do so, LSF utilizes the MCUBoot [REF-191] bootloader, 
which supports asymmetrically encrypted and signed firmware images as well as fallback and multiple 
images management. The update process is performed by the ground station sending the appropriate 
telecommands. When the whole firmware is uploaded, a final telecommand instructs the firmware upgrade 
to take place. The MCUBoot bootloader takes over, checks for the validity of the firmware and either boots 
on the new firmware or falls back to the previously working one. 
 
To handle the OTA process as a satellite passes through multiple ground stations, LSF has developed 
the OSDLP [REF-192], a platform and OS-independent library which implements the CCSDS Space 
Packet [REF-193], CCSDS TM Space Data Link Protocol [REF-194], CCSDS TC Space Data Link 
Protocol [REF-195], and CCSDS Communications Operation Procedure-1 [REF-196] directives. This 
library is responsible for the session management between the multiple subsystems of the satellite and 
the ground stations as the satellite passes above them. For every service and/or subsystem the OSDLP 
library assigns a separate virtual channel of communication, with its own session information. This session 
information can be either shared to the ground stations via the internet or can be retrieved by the ground 
station by sending the appropriate tele-command to the satellite. Normally, the first method is used 
because it is faster. 
 

6.4.2. Scenario’s Challenges and Needs from REWIRE  

Satellites operate in a quite challenging communication environment. Physical access to the spacecraft 
is impossible after its deployment in space, so reliable OTA updates are the only mechanism to apply 
modifications or improvements to the onboard software. However, any misbehaviour during or after the 
OTA firmware upgrade can result to a total loss of the spacecraft. This misbehaviour can occur either 
from legitimate firmware or malicious one, therefore a reliable and secure firmware update procedure is 
of highest importance. The common challenges that satellite operators commonly face are: 
 

• Protection of the satellite firmware against malicious or faulty code: Prior to the OTA 
procedure, the firmware files should be tested and analysed on the ground for vulnerabilities, 
malicious code or possible execution scenarios that can jeopardize the spacecraft and the mission 
in general.  

• Protection of satellite integrity against malicious code update: Even if the firmware to be 
updated is guaranteed that is legitimate and error-free, the OTA procedure itself may have some 
flaws. An attacker could benefit from vulnerabilities in the OTA procedure, that could lead to limited 
availability or total loss of the spacecraft. As ground station equipment becomes cheaper, replay 
attacks may also be easier to implement. An attacker could re-initiate the OTA of an older 
problematic firmware.  

• Protection of system’s integrity against Single Events Upset (SEU) and data corruption: A 
common source of failures in space missions is SEU from high energy particles affecting 
integrated circuits and memories. A SEU can alter a legitimate firmware that is stored in the 
persistent or non-volatile memory, resulting to the loss of the spacecraft. 

• Fallback mechanism in case of abnormal behaviour: In the case of abnormal behaviour of the 
running firmware or the OTA procedure, the satellite should fallback to a reliable and well-defined 
working state so a new OTA session can be re-initiated from the ground. 

• Isolation of critical operations: Isolation is required in order to avoid different function 
interference which could lead to unavailability of critical services or even to satellite unavailability.  

 
The main challenge of the current method of software updates is to verify the integrity of the firmware. 
Although there are methods to verify corruption of the firmware during transfer using checksums, this 
does not ensure that the firmware has not been tampered with. In addition to that, the communication 
channel is not confidential, and authentication is rudimentary. The REWIRE solution will try to cover the 
needs for: 
 

• Integrity against malicious code updates. Although the binaries are protected with checksums 
and are asymmetrically signed, there is no secure way to transfer the firmware reliably. A malicious 
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actor can relatively easily apply a replay attach, initiating the OTA of an older firmware. Also, the 
OTA procedure itself may have security vulnerabilities that should be addressed. 

• Confidentiality and authentication of software update transfers. Currently, the 
implementations of the protocols used for enabling SW updates to satellites do not cover the 
confidentiality and authentication requirements.  

• Trusted software update process. Currently, there are no solution on the satellites to guarantee 
the integrity of SW update received. Thus, SW update validation mechanisms need to ensure that 
integrity of the received SW and in addition to ensure the isolated execution of the SW update 
process. 

• Self-healing operation. In case of abnormal behaviour there is a need for a mechanism to recover 
in previously working firmware, or at a basic firmware with limited but well-defined functionality, so 
operators can identify the issue and re-initiate an OTA. 

• Runtime attestation of critical applications. Critical applications are not attested during runtime. 
Tampering with such apps can be safety critical to a satellite. Such attestation of critical apps can 
be performed by REWIRE. 

 

6.4.3.  “To-be” Scenario 

The satellite operator will initiate a firmware update for their satellite. The SatNOGS infrastructure will 
orchestrate the scheduling of the available ground stations, as the satellite passes through their field of 
view. Depending on the wireless link characteristics (path loss, interference level, etc.), the firmware file 
size and the capabilities of the satellite, the OTA procedure may not be possible to be completed into a 
single pass over a ground station. Each ground station informs the backbone infrastructure regarding the 
OTA progress. Then, based on the orbit the next available ground station is selected and informed with 
the OTA session information. This procedure continues until the OTA procedure is complete. During this 
procedure, the spacecraft should be able to mitigate possible attacks from known or unknown ground 
stations and provide a recovery mechanism in case of a failure during the OTA process. It will be also 
possible to identify firmware files that may disrupt the operation of the satellite and discard them. 

In the context of this scenario, the Smart Satellites use case will be enhanced using the REWIRE 
technologies in to achieve: 

• Secure communication channel: Communication channels between the ground stations in 
the network and the spacecraft should be secure and reliable. They should be also able adapt 
to the traffic characteristics, incorporating fault and delay tolerance. It also takes into 
consideration the limitations of the processing power of the CubeSat satellites that normally 
operate on microcontrollers. 

• Fail-safe and rollback mechanism: Due to the isolated environment that satellites operate, 
it is impossible for a person to take action in case of a failure. Failing to apply properly and 
firmware update may lead to the total loss of the spacecraft. Therefore, the system should 
provide a fail-safe mechanism that sets the satellite in a well-known state in case of failure. 
The system should also provide a rollback mechanism, to boot in a previously working firmware 
in case the current exhibits abnormal operation. Genesis board will host the attestation 
artifacts. 

• Analysis of the firmware file: Before applying the firmware on board, basic analysis of the 
firmware should be performed in order to detect possible vulnerabilities and/or implementation 
flaws so that to prevent abnormal operation 

• Attack identification and handling: The system should be able to identify possible attacking 
sources onboard the spacecraft in terms of applications that may deviate from a specific 
behavioural profile or in terms of critical services whose binaries and configurations may have 
been modified. 

• Services availability during the OTA firmware update procedure: The update procedure 
and all the security countermeasures should not affect the availability of the satellite and its 
services. Proper function isolation measures should be considered. 

 
The components that the system will operate include: 
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• SatNOGS infrastructure: The backbone infrastructure that supports the entire SatNOGS project, 
orchestrating the deployed ground stations and over-viewing the available orbiting satellites. It 
consists of several cloud-based services and databases 

• SatNOGS ground station: A ground station, with one or more antennas and RF interfaces and 
enough processing capabilities to perform DSP tasks 

• Satellite: A satellite with one or more subsystems 
 

6.4.4.  Reference scenario user stories 

[LSF.US.1]: As a satellite operator, I want to initiate a secure and reliable SW update on the satellite 
using the SatNOGS fleet of ground stations around the globe. The SW update may be accomplished by 
more than one ground station, based on the trajectory of the orbiting satellite. 
 
User Story Confirmations: The SW update package will be checked in terms of integrity and authenticity. 

The SW update will be applied only if it carries the appropriate security credentials, defined by the 

REWIRE security framework. The communication between the mission control centre that initiates the 

OTA, and the satellite will be secure, preventing replay attacks. The security between the mission control 

and the satellite should be assumed end-to-end, allowing the satellite to receive frames from any ground 

station as it passes through them, avoiding complex mechanisms (e.g., on-satellite key management, 

regular updates of possible new GS keys, etc.), simplifying ground stations on-boarding and the satellite 

operations in general. 

  
REWIRE Functionalities: To achieve a high level of security in REWIRE, there are certain needs for 
OTA features and procedures which will be addressed by the REWIRE offerings. 

• Before launch, the operator requests security credentials for her satellite from the REWIRE 
infrastructure and stores them at the satellite. In this way, we will be in position to utilise the side-
channel resistant mode of operation of AES designed by REWIRE.  

• The mission control centre encrypts and authenticates the firmware file issued by the satellite 

operator. This requires that the SatNOGS mission control centre can access the REWIRE security 

components  

• Attestation method is performed after the satellite fully receives the new firmware file so that to 

test the integrity of the new state of the satellite.  

• If any attestation mechanism fails, the satellite makes this information available on the periodic 
telemetry frames. With this way, subsequent ground stations will receive this information and 
report it back to the mission control centre. This increases the awareness of the satellite operator 
for the failure in the OTA process or possible attack, utilising also the risk assessment component 
of REWIRE. 

• If the uploaded SW is malicious or corrupted, the satellite rolls-back to the previous working 
firmware. (More details are given in LSF.US.5) 

 
The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 
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Figure 6.23: LSF US 1 Sequence Diagram 

 

[LSF.US.2]: As an operator of a network of connected ground stations, I want new ground stations 

to be able to join the network in a secure and authenticated way, with minimal human interaction. The 

status of the ground station should be easily accessible by the SatNOGS mission control centre. As a 

ground station operator, I would like a ground station to join the network with the minimal amount of 

configuration procedures. 

 

User Story Confirmations: Only authorized and authenticated stations should join the network of ground 
stations. In addition, a secure channel should be established with each of the ground stations and the 
SatNOGS Router entity, which is responsible for the orchestrion of the entire fleet of ground stations. 
Even if the model of communication between the mission control centre and a satellite utilizes end-to-end 
encryption for most of the missions, ground stations and the SatNOGS Router exchange sensitive data 
like for example the exact location of the ground station, owner information, etc. Therefore, it is necessary 
that a secure channel communication between the SatNOGS Router and each ground station is 
established. The system should also be able to revoke any security credentials in the case that a ground 
station is compromised or misbehaves so it does not pose a threat to the entire network. 
  
REWIRE Functionalities: To achieve the secure and authenticated on-boarding of ground station, 
REWIRE should: 

• Use the ZTO protocols in order to onboard in a dynamic manner the various ground stations that 
ensure the stable communication channel with the satellites.  

• During on boarding REWIRE would validate also the operational correctness of the ground 
stations. To do so, VCs will be used to bear the attestation result as evidence/security claims  

 
The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 
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been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 

 

 
Figure 6.24: LSF US 2 Sequence Diagram 

 
[LSF.US.3]: As a satellite operator, I want to automatically identify a misbehaviour on my satellite, based 
on the periodic health telemetry data that are fetched automatically by the SatNOGS network of ground 
stations. 
 
User Story Confirmations: Satellites send periodically a lot of information regarding the health of the 

spacecraft including but not limited the battery status, temperature readings, the charging status, the 

pointing and position of the spacecraft relatively to earth and sun, current flowing on different power rails 

and subsystems. In addition, they might also include the status of the operating system and the on-board 

software, the CPU and memory utilization as well errors that may have been encountered. On-board data 

fusion for misbehaviour detection may require a significant amount of processing power and may even 

be impossible due to vendor-locked on-board subsystems. The amount of historic data may also be a 

limited factor too. Therefore, it is more convenient to perform such an analysis on-ground, by automatically 

fetching the telemetry data from the SatNOGS infrastructure, that allows full access to all the historic 

telemetry data. An AI system can gather and analyse these data on regular intervals and automatically 

inform the satellite operator in case a misbehaviour is detected (e.g., no charging even if the temperature 

is within acceptable levels and the satellite solar panels facing the sun). 

 

REWIRE Functionalities: For such a system the following REWIRE functionalities need to be combined: 

• Facilitate data retrieval from the SatNOGS database of decoded frames for a specific mission. 
The use of secure oracles will be explored as the prominent way to achieve this.  

• REWIRE should take advantage of the AI-based misbehaviour component so that to train the AI 
model based on the available data 

• REWIRE should automatically and periodically execute the AI system to spot misbehaviours 

• Upon a misbehaviour detection the REWIRE AI system should inform the SatNOGS mission 
control centre and the risk assessment component. 

  

The following diagram illustrates the workflows which will take place among the various REWIRE 

components in order to realise the user story. The diagram is based on the components as those have 

been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 

and the respective interactions will be updated as the project progresses. 
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Figure 6.25: LSF US 3 Sequence Diagram 

 
[LSF.US.4]: As a satellite operator, I would like the satellite on-board software to have a fallback 
mechanism in case a misbehaviour is identified. The fallback mechanism should be reliable and 
autonomous, as during the deployment in space no human intervention is possible. 
 
User Story Confirmations: Satellites operate in a quite harsh environment. The major challenge is the 

total lack of physical access, with the only options left for correction actions to be either remotely controlled 

or autonomously on the spacecraft. Errors that can occur on the onboard firmware can be both internal 

(e.g., software bugs, deadlocks, unhandled erroneous states, etc.) or extraneous (e.g., bit flips or faulty 

memory banks caused by radiation). Regardless of the root cause, such issues may lead to the total loss 

of the spacecraft if they are not identified rapidly and handled properly. Therefore, it is essential for the 

satellite to identify a misbehaving firmware and switch immediately the satellite into a fallback mechanism, 

allowing the operators to identify the root cause and take evasive actions. The fallback mechanism may 

also try to select previously working firmware files stored onboard, in an effort to minimize the satellite 

service downtime. 

 

REWIRE Functionalities: For such a system REWIRE should provide: 

• Continuous device state monitoring during runtime, utilising the attestation mechanisms of 
REWIRE.  

• Attestation mechanism for misbehaviour identification during runtime and control flow attestation.  

• The REWIRE TEE in implement the fallback mechanism 

 

The following diagram illustrates the workflows which will take place among the various REWIRE 
components in order to realise the user story. The diagram is based on the components as those have 
been documented in the main REWIRE architectural diagram in Chapter 4. It is expected that the diagram 
and the respective interactions will be updated as the project progresses. 
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Figure 6.26: LSF US 4 Sequence Diagram 

 
  

6.4.5.  Metrics of success 

6.4.5.1. Quantitative Metrics  

 

ID Metric 
Target 
Value 

Acceptance 
Value 

(M)andatory / 
(G)ood to Have 

/ (O)ptional 

1 

Power consumption 
 
(REWIRE artifacts will be 
evaluated individually) 

< 10% 
overhead 

30% Overhead M 

2 

CPU load 
 
(REWIRE artifacts will be 
evaluated individually) 

< 10% 
overhead 

30% Overhead M 

3 Duration of firmware update < 12 mins - G 

4 
False positive of AI 
misbehaviour detection 

< 5% - G 

5 
False negative of AI 
misbehaviour detection 

< 2% - G 

6 
Time of a ground station 
onboarding 

< 1 sec - M 

7 
Satellite downtime during 
the OTA completion 

< 30 secs - M 
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8 
Fallback firmware 
procedure duration 

< 120 secs - M 

 

6.4.5.2. Qualitative Metrics  

ID Metric Target Value 
(M)andatory / 

(G)ood to Have / 
(O)ptional 

1 Satellite operator satisfaction High G 

2 
Configuration steps required for a ground 
station onboarding 

Minimal M 

3 Multiple fallback firmware files support Yes G 
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Chapter 7 

7. Trust indicators and threat landscape 
analysis 
 
This chapter explores the trust indicators and properties related to the REWIRE framework and the 
operational landscapes where it will be applied. Specifically, we review the required level of evidence to 
prove the trustworthiness of operations and services run on IoT devices, whilst taking into consideration 
adversarial assumptions and an attackers’ capabilities. We need to highlight that this Chapter is a high-
level introduction to REWIRE threat landscape categories. More detailed definitions and analysis of the 
discussed threats will be performed in the future WP2 deliverables (D2.2), as well as the individual 
technical deliverables of the REWIRE components (WP3-WP5), whereby T3.4 undertakes the automated 
risk assessment methodology.  
 

7.1 Trust Establishment in the REWIRE Ecosystem 

The REWIRE trust framework will be used to formally describe the policies, procedures, and mechanisms 
for the operation of digital trust in the network. Informally, trust and trustworthiness must capture a varied 
set of relationships between entities, hosts, and other components of the network. For instance, between 
two users in the system, one user and a component, or two components. In the following, we provide 
high-level discussion regarding the trust relationship between two entities, metrics of trust, the importance 
of zero-trust in REWIRE, and the concept of trustworthiness. 
 
Trust Relations:  
Incorporating a trust assessment mechanism, in addition to cryptographic mechanisms, is imperative 
given REWIRE’s complex, heterogeneous ecosystem of devices and mixed-criticality services. For 
instance, IoT devices are inherently untrustworthy, thus, a trust assessment mechanism plays an 
important role in measuring the level of trust between entities and components in the system. 
 
More formally, trust depicts a ternary relation in which entity A expects and can rely on entity B (denoted 

𝑇𝐴,𝐵) for some outcome 𝑋.  The outcome is known before the trust relation is established. That is, entity B 

states their intentions to perform goal 𝑋 which is usually a desired outcome for entity A. Note that entity A 

does not need to value the outcome; reliance is sufficient.  

 

Entity A places expectations (𝑅) on the performance, and trust may need to cover the how (process), the 

why (purpose), and sometimes the context (𝐶) of the goal. Formally, trust can be captured by the 3P’s 

(Performance, Purpose, Process) [REF-197] and we can write 𝑇𝐴,𝐵 ⟹ 𝑅(𝑋) in 𝐶.  Moreover, trust can be 

measured to an extent or so-called degree (𝐷) based on some evidence (𝐸).  

 

This can be written as 𝑇𝐴,𝐵 ⇒ 𝑅(𝑋) in 𝐶 to degree 𝐷 given evidence 𝐸.   

 

Evidence provided to entity A of entity B’s behaviour can be direct or indirect. Further, time may be 

incorporated such that evidence expires or the context is no longer stable after some time (𝑇).  

 

Generally, an agent will perform an assessment of whether entity B can exhibit 𝑅(𝑋), formally known as 

a referral of trust. 

 

Trust relations can be categorized into three types: 

1. A trusts B. 
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2. A has limited trust in B.  

3. A distrusts B (A has negative expectations of B demonstrating 𝑅(𝑋) in the context of 𝐶 ). 

 

Moreover, trust is directional/asymmetric and currently captured between two entities. Theoretically, if we 

extend binary trust to n entities, there are n*(n-1) possible relationships. Furthermore, a trust relation 

involving more than two entities implies a collection of entities is required to demonstrate 𝑅(𝑋) behaviour. 

Ultimately, this means that an entity can form a trust relation with the whole system rather than a 

component of the system.  

 

Metrics and Anchors of Trust: 

As mentioned earlier, a trust assessment mechanism will play an important role in REWIRE to quantify 
the trust between entities and components that inherently lack trust. Measuring trust can be done in 
several ways: 

1. A continuous/discrete value represented in the interval [-1,1] such that the minimum value 
represents distrust, and the maximum value represents complete trust.  

2. Alternatively, assign values to (𝑎, 𝑏, 𝑐)𝜖[0,1] representing trust, disbelief, and uncertainty 

respectively. Then the following holds: 𝑎 + 𝑏 + 𝑐 = 1.   

3. Use a probability distribution whereby the mean value represents a trust value for instance.  
 
We also need to capture the root(s)-of-trust of security properties to enable trust in components of the 
system.  Note that some HW may be deemed secure enough to be completely trusted. The following 
concepts have been established as anchors of trust [REF-198]: 

1. Legal regulations recognised by jurisdictional legislation and/or contractual agreements. This 
anchor of trust underpins operational processes and rules within the trust framework. Formally, 
legal trust anchors are used to incentivise (disincentivise) entity B to demonstrate (deviate from 
respectively) 𝑅(𝑋). 

2. Data sources relating to entities and attributes to be processed.  

3. Cryptographic root-of-trust for ensuring the properties of binding, revocation, authentication, 
signing, encryption, and other trust functions.  

4. Cybersecurity anchors such as policy violations/enforcement, certification processes etc.  
 
Zero Trust: 
The dynamic, heterogeneous nature of the REWIRE ecosystem calls for the integration of a trust 
paradigm throughout the network and communication processes. In the context of similar environments, 
it has become increasingly popular to adopt the zero-trust stance, which informally means actively 
verifying processes, devices, and components of devices in runtime. 
 
In more detail, zero-trust security is a security model requiring strict identity verification for every 
subject/entity and device trying to access resources on a private network, whether they are inside or 
outside the perimeter of the network. That is, a ZTA [REF-199] follows principles which assume no implicit 
trust granted to assets or user accounts based solely on their physical/network location or asset 
ownership. Adherence to the following tenets is required in a ZTA: 

• All data sources and computing services are considered resources. 

• All communication is secured regardless of network location. 

• Access to individual enterprise resources is granted on a per-session basis. 

• Access to resources is determined by dynamic policy—including the observable state of client 
identity, application/service, and the requesting asset—and may include other behavioural and 
environmental attributes. 

• The enterprise monitors and measures the integrity and security posture of all owned and 
associated assets. 

• All resource authentication and authorization are dynamic and strictly enforced before access is 
allowed. 

• The enterprise collects as much information as possible about the current state of assets, 
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network infrastructure and communications and uses it to improve its security posture. 
 

Trustworthiness: 
Trustworthiness is the complement to trust in the assessment framework, whereby trustworthiness in 
REWIRE is predicated upon the trustee entity/component being deemed worthy of trust.  
 
Rather than being defined by entity A’s expectations of entity B, trustworthiness is a property of B. 
Specifically, it is a measure of B’s ability to fulfil the role/actions relied upon by A. Broadly, we can say 
that entity B is trustworthy for entity A if A can rely on B. Modifying the notation of previous equations, we 
can depict trustworthiness as 𝑇𝑊𝐵,𝐴 ⇒ 𝑅(𝑋) in context 𝐶 given evidence 𝐸.  Note that evidence of entity 

B’s ability leaves no room for uncertainty, thus, it is a guarantee of trustworthiness.  
 
Ideally, some entity Z can measure and observe 𝑇𝑊𝐵,𝐴 (B is trustworthy for A) then provide an assessment 

to A. Given entity Z is independent, the assessment must consider entity A’s expectations and 
requirements. In the context of trust relations, if there is a lack of evidence of 𝑇𝑊𝐵,𝐴 then entity A should 

adopt the limited/dis-trust stance regarding entity B (trust type 2 or 3).  
 
ISO/IEC TS 5723:2022 defined trustworthiness as the ability to meet stakeholders’ expectations in a 
verifiable way.  

7.2 Adversarial Model and Assumptions 

In this subsection, we focus on analysing an adversaries’ capabilities in the REWIRE ecosystem, 
categorising attacks into three types. Namely, host-based, network-based, and physical/algorithmic-
based attacks. In doing so, we can examine threats to security, identify appropriate security mechanisms, 
and explore gaps in the literature that REWIRE can potentially address.  
 
Intel SGX was shown to be vulnerable to side-channel attacks based on cache [REF-200], page-faults 
[REF-201] as well as so called speculative execution attacks [REF-202]. Keystone, through the Security 
Monitor, can guarantee the confidentiality and integrity of the contents inside an enclave but can also be 
vulnerable under several threats. After the boot process, a measurement of the Security Monitor is 
generated and signed by the trusted hardware. If this signed measurement corresponds to the expected 
version, the Security Monitor is trusted. The Security Monitor only trusts the hardware, while the host and 
the runtime (RT) both trust the Security Monitor. The enclave app (eapp) trusts the Security Monitor and 
the RT. The approach suggested in [REF-203][REF-204] for a security analysis of Keystone is based on 
the protection of the enclave, the host OS and the Security Monitor. Only the Security Monitor and the 
enclave have PMP access to that enclave’s contents (these including not only the application but also the 
RT). This, in addition to the attestation primitive offered by Keystone, which enforces integrity at the initial 
state of the enclave, complicates software attacks to the enclave.  

 
Physical, software, side-channel, and denial-of-service attackers [REF-203] are listed as potentially willing 
to compromise the security guarantees of the system. Some of them are more relevant to the REWIRE 
scenarios than others, and even some of them are more relevant for a particular device inside a given 
scenario (e.g., a physical attacker may not be of substantial relevance for a physically protected device 
on the cloud plane). These will be detailed in the ensuing table. Physical attacks are considered by 
creating an on-chip memory extension [REF-203] such that it is possible to protect the enclave from a 
physical attacker APhy who has access to the DRAM. The purpose of this is to enable the enclave to 
execute without code or data leaving the chip package. This can be done – depending on the underlying 
platform – by dynamically instantiating a scratchpad memory region using a memory controller that can 
be used, exclusively, by said enclave for its entire lifetime. It is not a major modification and does not 
change the RT or the eapp.  

 
To protect the enclave from a cache side channel attacker (ACache), a cache partitioning scheme can be 
implemented [REF-203] utilizing hardware capabilities and again PMP. This enforces non-interference 
between the enclave and the untrusted world during the enclave execution, since then only the cache 
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lines from the enclave physical memory are in the partition and are thus protected by PMP. Also, the 
adversary cannot insert cache lines in this partition during the enclave execution due to a line replacement 
waymasking mechanism. Other additional functionalities, such as page encryption – in the fashion of Intel 
SGX – can be added to a modular RT like Eyrie. In the event of a page fault, an enclave might try to evict 
pages outside the secure physical memory. Page encryption and integrity protection can be implemented 
in order to maintain confidentiality (and integrity) of the page contents when moving it to insecure storage. 
This could also be used as a feature, although it implies important design challenges. Side-channel 
attacks (ASC, ATime) are commented in the “Protection of the Security Monitor” paragraph.  
 
Protection of the host OS: Attacks from an enclave to the host OS are not possible due to the own 
limitations by which an enclave operates. For instance, it cannot edit a page table that does not belong to 
the enclave and has no reference of other memory regions outside its boundaries. The Security Monitor 
timer can help prevent an eapp trying to DoS the system by simply interrupting the enclave execution and 
return execution to the OS. Furthermore [REF-204], the enclave cannot corrupt the host state because 
the Security Monitor performs a full context switch when the execution passes from enclave to host OS 
and back. However, Keystone currently has no meaningful mechanisms to protect against speculative 
execution attacks [REF-205][REF-206]. These are a combination of ASW and ASC by inducing a victim to 
speculatively perform operations that would not occur during correct program execution, and which leak 
the victim's confidential information via a side channel to the adversary. Defences against these attacks 
can nevertheless be implemented in Keystone [REF-207][REF-208].  
  
  
Protection of the Security Monitor: The Security Monitor, after boot, reserves and occupies a certain 
memory region that is PMP protected from the host OS and the enclaves, making it impossible for an ASW 
to attack it. However, it is possible for the RT to invoke untrusted system calls into the OS. In these cases, 
there is a risk of Iago attacks via the untrusted interface, whose protection is delegated to the RT and 
eapp developer. Mechanisms for such protection can be implemented [REF-209][REF-210]. One typical 
origin of such an attack is using legacy code as source for the eapp, by porting a legacy application. Here, 
while the TEE provides isolation for the application’s runtime state and memory, the system call interface 
represents a significant attack surface for the trusted application. For code to be vulnerable, it must a) 
neglect to sanitize the return values of a system call and b) use the return values in an unsafe way. A 
more general definition for these attacks is syscall tampering attacks. Regardless the origin, Keystone 
can reuse existing shielding systems [REF-211] as RT modules to defend against these attacks – however 
it is recommended to include only strictly necessary features in the RT and thus reduce the TCB.  
  
The Security Monitor SBI is vulnerable since there is no non-interference guarantee for it. However, the 
SBI in Keystone is a well-defined and well-limited interface from the Security Monitor to the S-mode (RT 
and host OS): it does not perform complex resource management and together with the low code footprint 
of the Security Monitor make the latter able to be formally verified, according to [REF-212]. The more 
extensions added to the SM SBI – and thus the more capabilities added to the Security Monitor – the 
more difficult for the SM to be formally verified and the more vulnerable the SBI becomes. Natively, 
Keystone does not protect the Security Monitor (or the enclaves) against timing side-channel attacks. 
However, software solutions exist for masking timing channels [REF-213] and hardware manufacturers 
can supply timing attack resistant hardware (e.g., Rocket-based quad-core SoC chip (FU540) with a 
proprietary L2 controller as in [REF-203]). Designers must however avoid naive deployment of Keystone 
(or similar TEEs) on out-of-order processors such as BOOM and XiangShan, which cannot guarantee 
isolation [REF-214]. To protect the Security Monitor against a physical attacker APhy the security monitor 
should be executed entirely from the on-chip memory. The Security Monitor is statically sized and has a 
relatively small in-memory footprint (< 150Kb). On the FU540, this would involve [REF-203] repurposing 
a portion of the L2 loosely integrated memory (LIM) via a modified trusted bootloader. 

 
In the context of REWIRE and TEE Keystone, a physical attacker APhy can intercept, modify or replay 
signals that leave the chip package if it has physical access to it. Here, APhyC is for confidentiality, APhyI is 
for integrity.  Moreover, a side-channel attacker ASC can obtain information by observing interactions 
between the trusted and the untrusted components via the cache side channel (ACache) or the timing side 
channel (ATime). For instance, cryptographic keys or other information could be revealed by analysing 
execution time patterns. Controlled channel attacks are not included since enclaves do not share any 
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state with the host OS or the user application. In the following Table 7.1, we categorise types of attacks 
and an attacker's capabilities into physical, network-based, and host-based attacks. 

 
Table 7.1: Attacker Capabilities and Types of Attacks Categorisation 

Attackers’ 
Capabilities  

Threats to 
Security  

Identified Security 
Mechanisms  

Gaps in the Literature  

Run SCA against 
specific device to 
recover the long-
term key  
 
(Physical Attack) 

Confidentiality 
and integrity 
violation 

SCA-secure mode of 
Authenticated 
Encryption 

Often heuristic solution 
No clear definition of security in the 
presence of leakage 
Special skill needed for secure 
implementation 
 
 

Run SCA on a 
device in order to 
inject a single fake 
message (without 
recovering the long-
term secret)  
 
(Physical Attack)) 

Integrity violation   SCA-secure mode of 
Authenticated 
Encryption 

Often heuristic solution 
No clear definition of security in the 
presence of leakage 
Special skills needed for secure 
implementation 

 Run SCA on a 
device in order to 
read a single 
message (without 
recovering the long-
term secret) 
 
(Physical Attack) 

Confidentiality 
violation 

Out-of-scope: the cost 
vs. benefit of 
preventing this attack 
is too high. From 
defender’s 
perspective, 
preventing an SCA 
attacker from reading 
data involves 
protecting, not only the 
decryption itself, but 
also the full SW 
update process 
afterwards. From 
attacker’s perspective, 
running a full SCA in 
order to read the 
content of one specific 
SW update, without 
the possibility to 
extend this to further 
updates, probably 
represents 
disproportionate effort. 

  

A software attacker 
ASW can control 
host applications or 
the untrusted OS, 
can introduce 
malicious 
information in 
network 
communications, 
launch adversarial 
enclaves, arbitrarily 
modify any memory 
not protected by the 
TEE, and add, drop 
or replay enclave 
messages.  

Authenticity, 
integrity, and 
confidentiality 
violations 

Cryptographic 
mechanism to ensure 
secure SW update. 
The main requirement 
is to ensure that the 
update is transferred in 
a secure manner.  
 

The cryptographic solution for 
provably secure SW updates needs to 
be easily deployable to a large class 
of IoT platforms, as in the REWIRE 
architecture. 
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(Host-Based 
Attack) 
 

Attacker can 
eavesdrop the 
communication 
channel or try to 
inject fake 
messages 
(Interception 
Attack). Thus, 
adversary can 
access information 
without 
authorisation. 
 
(Network-Based 
Attack) 
 

Privacy, 
Confidentiality, 
and Integrity 
Violations 

Authenticated 
Encryption (AE) 
 

No gaps. AE is a well-understood 
solution 
 

Sybil Attacker uses 
a single node in the 
blockchain to 
operate many false 
identities 
simultaneously 
 
(Network-Based 
Attack) 
 

Authorisation and 
confidentiality 
violation 

Identity verification 
mechanism and social 
trust graphs analysing 
data connectivity 

Identity validation (direct/indirect) 
sacrifices anonymity – work on proof 
of personhood solutions to provide 
anonymity. Over-reliance of SSI can 
lead to challenges: false identities in 
the verifier application, issues 
inserting and defining VCs held in 
digital wallet, interoperability between 
system and SSI solutions. 

An impersonation 
attacker is a 
malicious actor 
pretending to be 
someone else, or 
multiple entities, to 
steal sensitive data 
from an entity in the 
system. Examples 
include phishing 
attacks in which 
social engineering 
tactics are used. 
 
(Network-Based 
Attack) 
 

Confidentiality 
violations 

Identity verification 
mechanism and social 
trust graphs analysing 
data connectivity 
 
Runtime attestation of 
device/component 
state and ownership 
 

An open problem is how a user can 
insert a runtime attestation result, in 
the form of an attribute, into a VC 
issued from a VC (or DAA) issuer. 

Man-in-the-Middle 
is a type of 
eavesdropping 
attack in which an 
attacker puts 
themselves in the 
middle of two 
entities, typically a 
user and an 
application, to 
intercept their 
communications 
and data 
exchanges and use 

Authorisation 
problems leading 
to privacy, 
confidentiality, 
and integrity 
violations 
 

Authenticated 
Encryption (AE) 
 

No gaps. AE is a well-understood 
solution 
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them for malicious, 
unauthorised 
actions. 
 
(Network-Based 
Attack) 
 

Denial-of-Service 
attacker can take 
down the enclave 
or the host OS. 
Keystone allows 
the OS to DoS 
enclaves as the 
Security Monitor do 
not manage 
resources while the 
OS can refuse 
services to user 
applications at any 
time. 
 
 
(Network-Based 
Attack) 
 

Availability 
violations 

Network segmentation 
and implementing a 
zero-trust paradigm 

The heterogeneous nature of systems 
like REWIRE and the evolving threat 
landscape makes it challenging to 
implement secure solutions. 
Interoperability issues between IoT 
devices and software-defined network 
vendors. 
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Chapter 8 

8. Security Lifecycle Management and Secure 
On-Boarding and Monitoring 
 
In this Chapter we focus on the dynamic nature of the REWIRE ecosystem and the mechanisms in place 
to monitor the whole architecture to manage the security of the system throughout its lifecycle. In 
particular, we provide a high-level introduction to key management systems incorporating key hierarchies 
with which a variety of keys used in the REWIRE architecture are derived. Moreover, we recall Section 
4.4.7, regarding secure device onboarding, by detailing the creation of key restriction usage policies which 
are utilised by access control mechanisms. 

8.1 Key management and key hierarchies  

REWIRE requires the design of Key Management System (KMS) which can operate even in  an (un)-
trusted environment. Additionally, REWIRE requires a scalable solution with respect to the number of 
devices engaged, with enhanced performance regarding the time to derive cryptographic keys. Given 
these goals, we consider a Keystone TEE enabled KMS. 
   
At a high level, access control mechanisms are used to provide only authorised users with access to data. 
Data is encrypted to provide confidentiality and related files/data are encrypted by a cryptographic key. 
Therefore, storing cryptographic keys securely in a KMS is essential to support the distribution of keys to 
authorised users. It is desirable to minimise the amount of plaintext keying material requiring protection 
and storage. One approach is to use a key management hierarchy [REF-216], such that which is beneficial 
to reducing storage of keys, segmentation of encrypted data, and the design of appropriate key-restriction 
usage policies. 
 
A hierarchy is an acyclic graph of keys assigned to nodes. A data file is associated with a node in the 
graph and encrypted with the associated cryptographic key assigned to the node. Moreover, an authorised 
user with a node key can efficiently compute any descendant node’s key in the hierarchy, however, it is 
assumed to be computationally infeasible to derive a non-descendant key in the hierarchy [REF-217]. A 
key management hierarchy can be categorised into two district types: user-based and resource-based. In 
the former, nodes in the graph represents a group of users’ who have access to the corresponding node 
key. The latter type of hierarchy represents a group of resources such that an authorised user with access 
to the assigned node key can then access the resource(s) associated with the node.  
 
In the context of REWIRE, a KMS will be the baseline for several requirements such as secure device 
onboarding, providing keys for necessary cryptographic primitives (e.g., digital signature schemes) for 
dynamic credential management, and achieving secure SW/FW updates. The types of keys requiring 
storage includes symmetric and asymmetric keys regarding runtime attestation, sealing, migration etc. 
We highlight that the cryptographic keys cannot be derived in a secure way regarding side-channel 
analysis attacks.  
 
The exact types of keys used in the REWIRE architecture will be defined in work package deliverable 
D4.1 as part of the zero-touch onboarding mechanism, in which key restriction usage policies are created. 
The ensuing is a less detailed list of the types of keys, specific or general, that will be required in the 
REWIRE.   

1. Device Identity Key: A unique, unclonable, HW-backed identity key that can be authenticated 
and factored into access control decisions (key restriction usage polices) during the secure 
enrolment process.  

2. SW/FW Update Key: a pre-established, symmetric key used for SW updates, that is leakage 
resilient. Activated following the onboarding process (see section 4.4.7). 
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3. Long-term Identity Key: a storage asymmetric key-pair created within the TPM and used to 
protect the TPM protected keys stored outside of the TPM to provide fine-grained access control 
and acts as the root key of attribute signature keys in the key hierarchy. Crucially, it is used for the 
authentication of the MUD server in the manufacturing domain during the zero-touch onboarding 
process. 

4. Endorsement Keys: an asymmetric (RSA) key-pair used to endorse claims that data is 
trustworthy (see Chapter 8 regarding trustworthiness). These keys are created when the TPM is 
manufactured and are not user specific. The key-pair is unique and remains fixed. 

5. DAA Keys: privacy CA (DAA Issuer) asymmetric key-pair and signature key-pair created during 
secure enrolment. The protocol also creates attribute keys held by the issuer of the attributes and 
issued to the user (Prover), as well as authentication keys.  

6. Zero-Knowledge Keys: keys used for interactions with the BC, to be leveraged in the DAA 
protocol of REWIRE.  

7. Data Sealing Keys: sealed data is encrypted and authenticated in the Keystone TEE enclave, 
using SM and enclave related cryptographic keys, to enable secure and persistent storage of 
sensitive data. This process is necessary in the architecture of REWIRE, please see the 
proceeding subsection for detail. 

8. Migration Keys: cryptographic keys used for the process of migrating the state of an enclave to 
another enclave, be that with the same host or a different one. This is necessary in REWIRE to 
maintain resilience within the heterogeneous environment it is designed for. 

9. Session Keys: a symmetric, secret key randomly generated to ensure the security of a 
communication session between a user and device, or between two devices.  

8.2 Integration with Keystone 

Crucially, the KMS needs to be integrated with Keystone TEE to run critical services, such as key 
derivation, activation/deactivation, destruction, verification, and re-keying. Note that a KMS integrated with 
a TEE enables key generation in enclaves, whilst some keys can be generated in the SM which will act 
as a RoT for each KMS. Observe that these processes will be run in isolation from SW running on the 
platform. Components and communication channels in REWIRE need to be secure regardless of the 
network location. The security monitor (SM) will arbitrate communication between the untrusted world and 
the device. Despite SM in Keystone guaranteeing confidentiality and integrity of contents inside the 
enclave, it has been shown that the SM remains vulnerable to several attacks. Specifically, physical, 
software, side-channel, and DoS attacks. We defer the reader to Section 8.3 for details regarding 
protection of Keystone’s SM and enclave with respect to the attacks. 
 
The Keystone key-hierarchy is discussed in detail in [REF-218]. Here, the root key is an asymmetric 

processor key-pair, and the asymmetric SM key-pair is derived from a SM measurement as well as the 

secret key component of the root key-pair. Thus, the SM key-pair is bound to the SM identity and 

processor root key. Additional processes relevant to the key hierarchy includes data sealing which 

essentially allows an enclave to derive a key for encryption to be able to save data in untrusted, non-

volatile memory outside of the enclave [REF-218]. Following the structure of Keystone’s key hierarchy 

design, this means that a derived key is bound to the processor's identity, the SM, and the enclave. 

Assuming the processor, SM, and enclave remain the same, this means that the same key can be derived 

at a later point in time to decrypt encrypted data that has been outsourced in an untrusted environment. 

A less obvious feature of Keystone that REWIRE seeks to address is the migration of an enclave's state 

to another enclave on the same/different host. This presents several security and design challenges that 

must be considered in REWIRE. We need to address the possibility to dynamically generate migration 

keys from one enclave to another. Ensuring that enclaves co-operate is another challenge that can be 

addressed by having the policy orchestrator component of REWIRE generate a policy that enforces 

enclaves to perform their actions. The process of sealing a key requires a KDF taking the secret key 

component of the SM, a hash of the enclave and the keys identity as inputs. The output is the seal key 

which itself is input alongside the SM secret key into an ECDSA to output a key signature. The key 
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signature and seal key are the components of a Keystone Seal-Key Structure [REF-218]. Note that if the 

SM or processor changes, then the seal-key will be different as it is bound to the identities of both 

components. A hash of the enclave is also included for the same reasons, to bind the seal-key to the 

enclave, which means the seal-key will have to change when keys are migrated to another enclave as in 

REWIRE. To derive multiple keys from a singular enclave, Keystone dictates that the enclave can choose 

the key identity input into the KDF. 

 
Currently, a simple Keystone supported attestation scheme using ed25519 signatures on hashes of the 

SM and enclave content [REF-219][REF-220]. The root SM public-key is needed alongside a hash of 

enclave, plus a hash of the expected SM and a copy of the enclave report after launch. Note that Keystone 

needs additional support to guarantee security of the device root keys, which should only be accessible 

by the SM. 

8.3 Secure device on-boarding and key management requirements 

Recall, Section 4.4.7 details the process and sequence of zero-touch onboarding (ZTO) and secure 

enrolment of a device into the REWIRE network. Zero touch onboarding is vital for the creation of key 

restriction usage policies which define appropriate use of keys for access control lists to resources and 

components in the REWIRE network. The heterogeneity of the REWIRE ecosystem uses an approach in 

which a device is onboarded during an authentication protocol utilising a manufacturing usage description 

(MUD) profile in an extensible authentication protocol [REF-221], merged with DAA. This approach of 

DAA leveraging ZKPs is needed to supplement EAP-AAA, since the protocol currently does not provide 

any privacy assurances. The policies are extracted from the blockchain, via secure oracles, by a privacy 

CA interacting with the manufacturing domain of the device such that successful onboarding only occurs 

if a device has correctly attested to a verifier that it is at an expected state, without releasing the actual 

state. Here, attestation enables remote authentication of the devices TPM (HW module) to the MUD 

verifier, whilst preserving the privacy of the platform (device). 

 

Attribute-based attestation is a vital cryptographic mechanism for the secure enrolment a device to access 

mixed-criticality services in the network during runtime. During secure enrolment, a privacy CA (DAA 

issuer) issues a discrete logarithm representation (credential) of multiple attributes, each of which is 

associated with its own signing key held in a key hierarchy protected in the TPM. This means that 

attributes can be associated to an authorisation policy to restrict its usage, though this is not a necessity. 

A user can attest ownership of selected attributes in a DAA protocol, such that the attestation agent (within 

the device facility layer) augments credentials into verifiable presentations and proves authenticity in zero-

knowledge to the MUD verifier. Secure enrolment is also recorded on the blockchain. 

 

Self-sovereign and blockchain based access control [REF-222] needs to be considered in REWIRE, such 

that the secure oracle component in the architecture acts as the authenticating data feed of device runtime 

attestation to execute smart contracts whilst supporting privacy-preservation, using zero-knowledge of 

the self-issued attributes. The challenge in REWIRE will be injecting credentials into a verifiable 

presentation (VP) such that the credential was not issued by the privacy CA, rather, it represents a set of 

attributes related to the runtime state of the device, issued by the device itself. Self-issued credentials will 

be formed from a decentralized digital identifier (DID) document, stored in a BC-wallet, and used for 

identity verification on the blockchain. They are used to create a verifiable link between the device’s unique 

identity and the associated credential. That is, the credentials contained in the VP (corresponding to 

runtime attestation) will be digitally signed by the device identity private key, generating a tamper-proof 

signature of the credential’s authenticity. The working idea is to use a matrix of attributes, based on which 

attribute-based signatures (ABS) are created from some operation/predicate over a (subset) of a row in 

the matrix.   
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Chapter 9 

9. Definition of the REWIRE MVP  
 
This chapter provides the tables that map the use case requirements from the defined user stories (see 
Chapter 6) to the technical requirements of the REWIRE framework (see Chapter 5). The outcome is that 
the REWIRE framework is necessary to secure the next generation SoS during their entire lifecycle, from 
the design phase to runtime. 

9.1 Mapping of use case requirements to REWIRE technical 

requirements 

Under the guiding principle “Never Trust, Always Verify”, the goal of the envisioned REWIRE architecture 
is to enable the long-term transformation of the emerging SoS into a distributed smart ecosystem with 
embedded trust while demonstrating the use of formal verification, trusted computing, identify 
management, vulnerability detection and analysis and Blockchain technologies for addressing 
requirements of several vertical industry sectors (e.g., smart cities, automotive and smart satellites). The 
tables follow the coding convention from Chapter 6 for user stories (first row), and from Chapter 5 for 
REWIRE technical requirements (first column). 
 

Table 9.1: Use Case #1 – Mapping use case requirements to technical requirements 

Requirement ID ODINS.US.
1 

ODINS.US.2 ODINS.US.
3 

ODINS.US.4 ODINS.US.5 

Functional Requirements 

FR.FR.1      x x   

FR.FR.2         

FR.FR.3   x x    

FR.FR.4     x x   

FR.FR.5 x x  x     

FR.FR.6   x      

FR.FR.7   x       

FR.FR.8 x     x   

Security Requirements 

FR.FR.9 x x    x 

FR.FR.10 x x x   x 

FR.FR.11 x x x   x 

FR.FR.12 x x    x 

FR.FR.13 x     x 

FR.FR.14 x   x x 

FR.FR.15 x     x 

Operational Assurance Requirements 
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FR.FR.16       x   

FR.FR.17 x x x x   

FR.FR.18 x x x    

FR.FR.19   x x     

FR.FR.20 x       

FR.FR.21  x      

FR.FR.22   x     

Formal verification Requirements 

FR.FR.23 x x x x x 

FR.FR.24 x x x x x 

FR.FR.25 x x x x x 

FR.FR.26 x x x x x 

RoT Requirements 

FR.FR.27 x x x x x 

FR.FR.28 x x x x x 

FR.FR.29 x x x x x 

FR.FR.30 x x x x x 

FR.FR.31 x x x x x 

  
   

Table 9.2: Use Case #2 – Mapping use case requirements to technical requirements 

Requirement ID KEN.US.1 KEN.US.2 KEN.US.3 KEN.US.4 

Functional Requirements 

FR.FR.1   x  x   

FR.FR.2   x  x    

FR.FR.3  x     

FR.FR.4   x  x   

FR.FR.5 x x     

FR.FR.6   x x x 

FR.FR.7      x 

FR.FR.8 x       

Security Requirements 

FR.FR.9     

FR.FR.10    x 

FR.FR.11     

FR.FR.12  x  x 

FR.FR.13 x    
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FR.FR.14 x    

FR.FR.15 x  x  

Operational Assurance Requirements 

FR.FR.16       

FR.FR.17   x x 

FR.FR.18   x x 

FR.FR.19   x   

FR.FR.20 x  x  

FR.FR.21  x  x 

FR.FR.22 x    

Formal verification Requirements 

FR.FR.23 x x x x 

FR.FR.24 x x x x 

FR.FR.25 x x x x 

FR.FR.26 x x x x 

RoT Requirements 

FR.FR.27 x x x x 

FR.FR.28 x x x x 

FR.FR.29 x x x x 

FR.FR.30 x x x x 

FR.FR.31 x   x x 

  
  

Table 9.3: Use Case #3 – Mapping use case requirements to technical requirements 

Requirement 
ID 

LSF.US.1 LSF.US.2 LSF.US.3 LSF.US.4 

Functional Requirements 

FR.FR.1        

FR.FR.2  x x  x 

FR.FR.3   x x x 

FR.FR.4     x   

FR.FR.5 x      

FR.FR.6   x x x 

FR.FR.7   x    

FR.FR.8     x 

Security Requirements 

FR.FR.9 x x    
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FR.FR.10 x x    

FR.FR.11 x x    

FR.FR.12  x    

FR.FR.13      

FR.FR.14   x  

FR.FR.15      

Operational Assurance Requirements 

FR.FR.16     x  

FR.FR.17 x x   

FR.FR.18 x x    

FR.FR.19   x x    

FR.FR.20 x x   x 

FR.FR.21 x     

FR.FR.22  x    

Formal verification Requirements 

FR.FR.23 x x x x 

FR.FR.24 x x x x 

FR.FR.25 x x x x 

FR.FR.26 x x x x 

RoT Requirements 

FR.FR.27 x x x x 

FR.FR.28 x x x x 

FR.FR.29 x x x x 

FR.FR.30 x x x x 

FR.FR.31 x x x x 

  
 

9.2 Prioritisation of Requirements 

The REWIRE MVP depicts the shared vision of the consortium. A necessary step towards defining the REWIRE 

MVP is the prioritisation of the identified requirements. Thus, the REWIRE MVP will be built based on the following 

requirements set shown in the following table. The involvement of the demonstrators is crucial for establishing 

REWIRE’s vision and guiding it toward the actual demands of the three use cases. The table below provides the 

mapping among the “must have” and ”should” requirements of the MVP and its applicability per use case. 

 

Table 9.4: REWIRE MVP 

Requirement ID Evident in 
all use 
cases 

Evident in 
use case 1 

Evident in 
use case 2 

Evident in 
use case 3 

Covered by 
no. of user 
stories 
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Functional Requirements 

FR.FR.1   x (2) x (2)   4 

FR.FR.2     x (2) x (3) 5 

FR.FR.3 x x (2) x (1) x (3) 6 

FR.FR.4 x x (2)  x (2) x (1) 5 

FR.FR.5 x x (3) x (2) x (1) 6 

FR.FR.6 x x (1) x (3) x (3) 7 

FR.FR.7 x x (1) x (1) x (1) 3 

FR.FR.8 x x (2) x (1) x (1) 4 

Security Requirements 

FR.FR.9   x (3)   x (2) 5 

FR.FR.10 x x (4) x (1) x (2) 7 

FR.FR.11   x (4)   x (2) 6 

FR.FR.12 x x (3) x (2) x (1) 6 

FR.FR.13   x (2) x (1)   3 

FR.FR.14 x x (3) x (1) x (1) 5 

FR.FR.15  x (2) x (2)  4 

Operational Assurance Requirements 

FR.FR.16   x (1)   x (1) 2 

FR.FR.17 x x (4) x (2) x (2) 8 

FR.FR.18 x x (3) x (2) x (2) 7 

FR.FR.19 x x (2) x (1) x (2) 5 

FR.FR.20 x x (1) x (2) x (3) 6 

FR.FR.21 x x (1) x (2) x (1) 4 

FR.FR.22 x x (1) x (1) x (1) 3 

Formal verification Requirements 

FR.FR.23 x       13 

FR.FR.24 x       13 

FR.FR.25 x       13 

FR.FR.26 x       13 

RoT Requirements 

FR.FR.27 x       13 

FR.FR.28 x       13 

FR.FR.29 x       13 

FR.FR.30 x       13 

FR.FR.31 x       13 
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The REWIRE MVP, consists of a total of 24 “must-have” requirements (including 4 requirements for 
the formal verification and 5 for the underlying RoT), and 7 “should-have” requirements. The “must-have” 
requirements are suggested as the initial core requirements of the platform to be delivered (although the 
consortium’s goal is to be able to validate all identified requirements) and are deemed the most important 
properties used in our three use cases.  
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Chapter 10 

10. Conclusions 
 
The deliverable provided an initial exploration and description of the state of the art for each technology 
module, defined the mandatory and desirable requirements and the conceptual architecture with a 
detailed breakdown of the business logic of each one of the comprised components and building blocks. 
REWIRE conceptual architecture aims to satisfy the requirements that have been formulated during the 
requirements analysis phase. The aforementioned exploration stems out of the vision of the consortium 
for a holistic security management framework that can safeguard “Systems-of-Systems” during their entire 
lifecycle, staring from the design phase with formal verification and theorem proving methods to the 
runtime phase with continuous authentication and verification. It has also defined in more detail the three 
use cases of the project, going down into the level of user stories that will be used to validate the overall 
REWIRE framework.  
 
As a consequent step, the use cases have been linked with the technical requirements (e.g., functional, 
security etc.) that should be at least covered by the framework to be developed, and that will be tested by 
at least one of the three demonstrators. This list, alongside with the detailed descriptions of the use cases 
and their user stories, will be used as input to the design of the demonstrator’s plans, and will act as 
reference material for any consequent design and development activity of the project. 
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List of Abbreviations 
 

 

Abbreviation Translation  

  

AADL Architecture Analysis and Design Language 

ABAC Attribute-based Access Control 

ABS Attribute-based Signature 

AC Anonymous Credentials 

ACL Access-Control List 

ADAS Advanced Driver Assistance System 

AGREE Assume Guarantee REasoning Environment 

AI Artificial Intelligence 

ASIL Automotive Safety Integrity Level 

AUTOSAR AUTomotive Open System ARchitecture 

BC Blockchain 

BMC Bounded Model Checking 

BSV Bluespec SystemVerilog 

BTL Build-Test-Learn 

CA Certificate Authority 

CAN Controller Area Network 

CAPEC Common Attack Pattern Enumeration and Classification 

CAV Connected Autonomous Vehicle 

CFA Control Flow Attestation 

CFG Control Flow Graph 

CIV Configuration Integrity Verification 

CNN Convolutional Neural Networks 

CPS Cyber-Physical Systems 

CTMD Collaborative Threat and Misbehaviour Detection 

CVSS Common Vulnerability Scoring System 

DAA Direct Anonymous Attestation 

DAA-A Direct Anonymous Attestation with attributes 

DCM Diagnostic Communication Manager 

DID Decentralised ID 

DL Deep Learning 

DLT Distributed Ledger Technology 

DMA Direct Memory Access 

DNN Deep Neural Networks 

DSL Domain Specific Language 
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DT Decision Tree 

EAP Extensible Authentication Protocol 

EBP European Blockchain Partnership 

EBSI European Blockchain Services Infrastructure 

ECDAA Elliptic Curve based DAA 

ECU Electronic Control Units 

EK Endorsement Key 

EPC Enclave Page Cache 

EPCM Enclave Page Cache Map 

EPID Enhanced Privacy ID 

FIDO Fast IDentity Online 

FL Federated Learning 

FUOTA Firmware Update Over the Air 

FV Formal Verification 

GAN Generative Adversarial Networks 

HABS Hierarchical Attribute-based Signature 

HPC High-Performance Computer 

HW Hardware 

IAM Identity & Access Management 

INVEST Independent, Negotiable, Valuable, Estimable, Small, and Testable 

IOMMU Input/Output Memory Management Unit 

IPSec Internet Protocol Security 

ISA Instruction Set Architecture 

ISE Instruction Set Extensions 

JWT Jason Web Tokens 

KMS Key Management System 

KNN K-Nearest Neighbour 

LEO Low Earth Orbit 

LKAS Lane-Keeping Assistance System 

LR Logistic Regression 

LR Linear Regression 

MAC Message Authentication Code 

MBE Model Based Engineering 

ML Machine Learning 

MMU Memory Management Unit 

MITM Man-in-the-Middle 

MUD Manufacturer Usage Description 

MVP Minimum Viable Product 

NN Neural Networks 

OBD On-Board Diagnostics 
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OEM Original Equipment Manufacturer 

PMP Physical Memory Protection 

PO Policy Orchestrator 

PSK Pre-Shared Key 

PSL Property Specification Language 

PTPS Public Transportation Priority Systems 

PUF Physical Unclonable Functions 

RA Remote Attestation 

REE Rich Execution Environment 

RF Random Forest 

RIA Research and Innovation Actions 

RNN Recurrent Neural Networks 

RoT Root of Trust 

RTL Register Transfer Level  

SecOC Secure Onboard Communication 

SEU Single Events Upset 

SGX Software Guard Extension 

SM Security Monitor 

SMT Satisfiability Modulo Theory 

SotA State-of-the-Art 

SPOF Single Point of Failure 

SSI Self-Sovereign Identity 

SoC System on Chip 

SOC Service Oriented Communication 

SoS Systems-of-Systems 

SVA System Verilog Assertions 

SVM Support Vector Machine 

SW Software 

TC Trusted Component 

TCB Trusted Computing Base 

TEE Trusted Execution Environment 

TLS Transport Layer Security 

TPM Trusted Platform Module 

TRL Technology Readiness Level 

TRNG True Random Number Generator 

UDS Unified Diagnostic Service 

VC Verifiable Credential 

VLR Verifier-Local Revocation 

VP Verifiable Presentation 

V&V Validation and Verification 
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W3C World Wide Web Consortium 

WP Work Package 

ZKP Zero-Knowledge Proof 

ZTA Zero-Trust Architecture 

ZTO Zero Trust On-boarding 
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